分析 (1)由條件利用三角函數(shù)恒等變換的應用化簡函數(shù)解析式可得f(x)=2sin(2x+$\frac{π}{3}$),由x∈[0,$\frac{π}{2}$]根據(jù)正弦函數(shù)的定義域和值域即可得解.
(2)用五點法作函數(shù)y=Asin(ωx+φ)在一個周期上的簡圖.
(3)根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.
解答 解:(1)∵f(x)=2cosx•sin(x+$\frac{π}{3}$)-$\sqrt{3}$sin2x+sinx•cosx
=sin2x+$\sqrt{3}$cos2x
=2sin(2x+$\frac{π}{3}$),
∵x∈[0,$\frac{π}{2}$],2x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{4π}{3}$],
∴f(x)=2sin(2x+$\frac{π}{3}$)∈[-$\sqrt{3}$,2].
(2)列表:
2x+$\frac{π}{3}$ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | -$\frac{π}{6}$ | $\frac{π}{12}$ | $\frac{π}{3}$ | $\frac{7π}{12}$ | $\frac{5π}{6}$ |
y | 0 | 2 | 0 | -2 | 0 |
點評 本題主要考查正弦函數(shù)的定義域和值域,用五點法作函數(shù)y=Asin(ωx+φ)在一個周期上的簡圖,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=sinx在[0,π]內(nèi)是單調(diào)函數(shù) | |
B. | 在第二象限內(nèi),y=sinx是減函數(shù),y=cosx也是減函數(shù) | |
C. | y=cosx的增區(qū)間是[0,π] | |
D. | y=sinx在區(qū)間[$\frac{π}{2}$,π]上是減函數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-1)∪(0,1) | B. | (-1,0)∪(1,+∞) | C. | (-∞,-1)∪(1,+∞) | D. | (-1,0)∪(0,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com