1.一拋物線型拱橋,當(dāng)水面寬2$\sqrt{6}$m時,水面離拱頂3m,當(dāng)水面寬4m時,水面( 。
A.上升1mB.下降1mC.上升2mD.上升3m

分析 先建立平面直角坐標(biāo)系,拋物線方程假設(shè)為:x2=-2py(p>0),再利用當(dāng)拱頂離水面3米,水面寬2$\sqrt{6}$米,求出拋物線方程,進而可求水面寬4m,水面上升的高度.

解答 解:建立如圖所示的平面直角坐標(biāo)系,則拋物線方程可假設(shè)為:x2=-2py(p>0),
∵當(dāng)拱頂離水面3米,水面寬2$\sqrt{6}$米,
∴($\sqrt{6}$,-3)代入拋物線方程可得:6=6p,
∴2p=2,
∴拋物線方程為:x2=-2y.
如果水面寬4m,則令x=2,
∴y=2,
∴水面上升1m,
故選:A.

點評 本題考查拋物線的應(yīng)用,考查待定系數(shù)法求拋物線的方程,解題的關(guān)鍵是正確建立平面直角坐標(biāo)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx-a(x-1),g(x)=ex,
(1)(Ⅰ)g(x)≥x+1
   (Ⅱ)設(shè)h(x)=f(x+1)+g(x),當(dāng)x≥0,h(x)≥1時,求實數(shù)a的取值范圍;
(2)當(dāng)a≠0時,過原點分別做曲線y=f(x)與y=g(x)的切線l1、l2,已知兩切線的斜率互為倒數(shù),證明:$\frac{e-1}{e}$<a<$\frac{{e}^{2}-1}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在正方體ABCD-A1B1C1D1中,異面直線A1B和CC1所成角的大小是45°,異面直線A1B和B1C1所成角的大小是90°,異面直線A1B和AC所成角的大小是60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若函數(shù)f(x)在點A(1,-1)處的導(dǎo)數(shù)為-2,則函數(shù)在點A處的切線方程為2x+y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)的定義域為(0,+∞),且滿足f(4)=1,對任意x1、x2∈(0,+∞)都有f(x1•x2)=f(x1)+f(x2),當(dāng)x∈(0,1)時,f(x)<0.
(1)證明函數(shù)f(x)在(0,+∞)上是增函數(shù);
(2)解不等式f(3x+1)+f(2x-6)≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知實數(shù)x、y滿足$\left\{\begin{array}{l}{4x+y-9≥0}\\{x-y-1≤0}\\{y≤3}\end{array}\right.$,若x-ky的最大值是-1,則正數(shù)k的值為( 。
A.3B.$\frac{5}{3}$C.3或$\frac{5}{3}$D.3或$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列函數(shù)中,當(dāng)自變量x變得很大時,隨x的增大速度增大得最快的是( 。
A.y=$\frac{1}{100}$exB.y=100lnxC.y=x100D.y=100•2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)集合A={x|x2-2x-3<0},集合B=Z(Z為整數(shù)集),則A∩B中的元素的個數(shù)為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.“a+b是偶數(shù)”是“a、b都是偶數(shù)”的(  )
A.充分不必要條件B.充要條件
C.必要不充分條件D.非充分非必要條件

查看答案和解析>>

同步練習(xí)冊答案