11.已知函數(shù)f(x)=lnx-a(x-1),g(x)=ex
(1)(Ⅰ)g(x)≥x+1
   (Ⅱ)設(shè)h(x)=f(x+1)+g(x),當(dāng)x≥0,h(x)≥1時,求實數(shù)a的取值范圍;
(2)當(dāng)a≠0時,過原點分別做曲線y=f(x)與y=g(x)的切線l1、l2,已知兩切線的斜率互為倒數(shù),證明:$\frac{e-1}{e}$<a<$\frac{{e}^{2}-1}{e}$.

分析 (Ⅰ)求得g(x)-x-1的導(dǎo)數(shù),求得單調(diào)區(qū)間和極小值,可得最小值,即可得證;
(Ⅱ)(1)利用導(dǎo)數(shù)處理函數(shù)的最值和不等式的恒成立求參數(shù)的范圍問題,求導(dǎo)過程中用到了ex≥x+1這個結(jié)論,注意討論a的范圍;
(2)背景為指數(shù)函數(shù)y=ex與對數(shù)函數(shù)y=lnx關(guān)于直線y=x對稱的特征,得到過原點的切線也關(guān)于直線y=x對稱,利用導(dǎo)函數(shù)研究曲線的切線及結(jié)合方程有解零點存在定理的應(yīng)該用求參數(shù)的問題,得到不等式的證明.

解答 解:(Ⅰ)g(x)-x-1=ex-x-1,
g′(x)=ex-1,當(dāng)x>0時,g′(x)>0,g(x)遞增;
當(dāng)x<0時,g′(x)<0,g(x)遞減.
則x=0處取得極小值,且為最小值0,
即有g(shù)(x)≥x+1:
(Ⅱ)(1)h(x)=f(x+1)+g(x)=ln(x+1)-ax+ex,
h′(x)=ex+$\frac{1}{x+1}$-a.
①當(dāng)a≤2時,因為ex≥x+1,所以h′(x)=ex+$\frac{1}{x+1}$-a≥x+1+$\frac{1}{x+1}$-a≥2-a≥0,
h(x)在[0,+∞)上遞增,h(x)≥h(0)=1恒成立,符合題意;
②當(dāng)a>2時,因為h″(x)=ex-$\frac{1}{(x+1)^{2}}$=$\frac{(x+1)^{2}{e}^{x}-1}{(x+1)^{2}}$≥0,
所以h′(x)在[0,+∞)上遞增,且h′(0)=2-a<0,
則存在x0∈(0,+∞),使得h′(0)=0.
所以h(x)在(0,x0)上遞減,在(x0,+∞)上遞增,又h(x0)<h(0)=1,
所以h(x)≥1不恒成立,
綜合①②可知,所求實數(shù)a的取值范圍是(-∞,2];
(2)證明:設(shè)切線l2的方程為y=k2x,切點為(x2,y2),
則y2=ex2,k2=g′(x2)=ex2=$\frac{{y}_{2}}{{x}_{2}}$,
所以x2=1,y2=e,則k2=ex2=e.
由題意知,切線l1的斜率為k1=$\frac{1}{{k}_{2}}$=$\frac{1}{e}$,l1的方程為y=k1x=$\frac{1}{e}$x.
設(shè)l1與曲線y=f(x)的切點為(x1,y1),
則k1=f′(x1)=$\frac{1}{{x}_{1}}$-a=$\frac{1}{e}$=$\frac{{y}_{1}}{{x}_{1}}$,
所以y1=$\frac{{x}_{1}}{e}$=1-ax1,a=$\frac{1}{{x}_{1}}$-$\frac{1}{e}$.
又因為y1=lnx1-a(x1-1),消去y1和a后,整理得lnx1-1+$\frac{1}{{x}_{1}}$-$\frac{1}{e}$=0.      
令m(x)=lnx-1+$\frac{1}{x}$-$\frac{1}{e}$=0,則m′(x)=$\frac{1}{x}$-$\frac{1}{{x}^{2}}$=$\frac{x-1}{{x}^{2}}$,
m(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增.
若x1∈(0,1),因為m($\frac{1}{e}$)=-2+e-$\frac{1}{e}$>0,m(1)=-$\frac{1}{e}$<0,
所以x1∈($\frac{1}{e}$,1),
而a=$\frac{1}{{x}_{1}}$-$\frac{1}{e}$在x1∈($\frac{1}{e}$,1)上單調(diào)遞減,所以$\frac{e-1}{e}$<a<$\frac{{e}^{2}-1}{e}$.
若x1∈(1,+∞),因為m(x)在(1,+∞)上單調(diào)遞增,且m(e)=0,則x1=e,
所以a=$\frac{1}{{x}_{1}}$-$\frac{1}{e}$=0(舍去).
綜上可知,$\frac{e-1}{e}$<a<$\frac{{e}^{2}-1}{e}$.

點評 本題考查利用導(dǎo)數(shù)求切線的斜率和單調(diào)性、極值和最值,討論含參數(shù)函數(shù)的單調(diào)性、利用導(dǎo)數(shù)求曲線的切線問題及研究不等式恒成立問題,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.各頂點都在一個球面上的正四棱柱(底面是正方形,側(cè)棱垂直于底面)高為2,體積為8,則這個球的表面積是( 。
A.16πB.12πC.10πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知直線l:2x-y+1=0與圓(x-2)2+y2=r2相切,則r等于$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)命題p:函數(shù)f(x)=x3-ax-1在區(qū)間[-1,1]上單調(diào)遞減;命題q:函數(shù)y=ln(x2+ax+1)的定義域是R.如果命題p或q為真命題,p且q為假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知長方體ABCD-A1B1C1D1,點E、F分別是上底面A1B1C1D1和面CC1D1D的中心,求其中x,y,z的值.
(1)$\overrightarrow{A{C}_{1}}$=x$\overrightarrow{AB}$+y$\overrightarrow{BC}$+z$\overrightarrow{C{C}_{1}}$;
(2)$\overrightarrow{AE}$=x$\overrightarrow{AB}$+y$\overrightarrow{BC}$+z$\overrightarrow{C{C}_{1}}$;
(3)$\overrightarrow{AF}$=x$\overrightarrow{BA}$+y$\overrightarrow{BC}$+z$\overrightarrow{{C}_{1}C}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=ax3-2x-lnx,a∈R
(1)若曲線y=f(x)在x=1處的切線方程為y=b,求a+b的值;
(2)在(1)的條件下,求函數(shù)f(x)零點的個數(shù);
(3)若不等式|f(x)+2(x+a)|≥1對任意x∈(0,1]都成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在棱長為a的正方體OABC-O1A1B1C1中,E,F(xiàn)分別是棱AB、BC上的動點,且AE=BF=x,其中0≤x≤a,以O(shè)為原點建立空間直角坐標(biāo)系O-xyz.
(1)寫出點E、F的坐標(biāo);
(2)求證:A1F⊥C1E;
(3)若A1、E、F、C1四點共面,求證:$\overrightarrow{{A}_{1}F}$=$\frac{1}{2}$$\overrightarrow{{A}_{1}{C}_{1}}$+$\overrightarrow{{A}_{1}E}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.拋物線y=x2的一組斜率為2的平行弦中點的軌跡是(  )
A.B.橢圓C.拋物線D.射線(不含端點)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一拋物線型拱橋,當(dāng)水面寬2$\sqrt{6}$m時,水面離拱頂3m,當(dāng)水面寬4m時,水面( 。
A.上升1mB.下降1mC.上升2mD.上升3m

查看答案和解析>>

同步練習(xí)冊答案