7.已知拋物線x2=2py(p>0)的準(zhǔn)線經(jīng)過(guò)橢圓$\frac{y^2}{2}+{x^2}$=1的一個(gè)焦點(diǎn),則拋物線焦點(diǎn)坐標(biāo)為(  )
A.(0,-2)B.(0,2)C.(0,-1)D.(0,1)

分析 利用橢圓和拋物線的簡(jiǎn)單性質(zhì)直接求解.

解答 解:橢圓$\frac{y^2}{2}+{x^2}$=1的焦點(diǎn)坐標(biāo)分別為(0,-1),(0,1)
∵拋物線x2=2py(p>0)的準(zhǔn)線經(jīng)過(guò)橢圓$\frac{y^2}{2}+{x^2}$=1的一個(gè)焦點(diǎn),
∴$\frac{p}{2}$=1,
∴拋物線焦點(diǎn)坐標(biāo)為(0,1).
故選:D.

點(diǎn)評(píng) 本題考查拋物線中參數(shù)的求法,是基礎(chǔ)題,解題時(shí)要注意橢圓線和拋物線的簡(jiǎn)單性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與拋物線y2=4x的準(zhǔn)線的一個(gè)交點(diǎn)的縱坐標(biāo)為y0,若|y0|<2,則雙曲線C的離心率的取值范圍是( 。
A.(1,$\sqrt{3}$)B.(1,$\sqrt{5}$)C.($\sqrt{3}$,+∞)D.($\sqrt{5}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知0<x<1,0<y<1,
求證$\sqrt{{x^2}+{y^2}}$+$\sqrt{{x^2}+{{(1-y)}^2}}$+$\sqrt{{{(1-x)}^2}+{y^2}}$+$\sqrt{{{(1-x)}^2}+{{(1-y)}^2}}$≥2$\sqrt{2}$,并求使等號(hào)成立的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.一個(gè)三角形樹(shù)陣如下:

按照以上規(guī)律,第10行從左到右的第3個(gè)數(shù)為247

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知點(diǎn)A(3,-2)在拋物線C:x2=2py的準(zhǔn)線上,過(guò)點(diǎn)A的直線與C在第一象限相切于點(diǎn)B,記C的焦點(diǎn)為F,則直線BF的斜率為(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.用數(shù)學(xué)歸納法證明:$\frac{{1}^{2}}{1×3}$+$\frac{{2}^{2}}{3×5}$+…+$\frac{{n}^{2}}{(2n-1)(2n+1)}$=$\frac{n(n+1)}{2(2n+1)}$,推證當(dāng)n=k+1等式也成立時(shí),用上歸納假設(shè)后需要證明的等式是( 。
A.$\frac{k(k+1)}{2(2k+1)}$+$\frac{(k+1)^{2}}{(2k+1)(2k+3)}$=$\frac{(k+1)(k+2)}{2(2k+3)}$
B.$\frac{k(k+1)}{2(2k+1)}$+$\frac{(k+1)^{2}}{(2k+1)(2k+3)}$=$\frac{(k+1)(k+2)}{2k+3}$
C.$\frac{k(k+1)}{(2k+1)}$+$\frac{(k+1)^{2}}{(2k+1)(2k+3)}$=$\frac{(k+1)(k+2)}{2(2k+3)}$
D.$\frac{k(k+1)}{2(2k+3)}$+$\frac{(k+1)^{2}}{(2k+1)(2k+3)}$=$\frac{(k+1)(k+2)}{2(2k+3)}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),直線l不過(guò)原點(diǎn)O且不平行于坐標(biāo)軸,l與C有兩個(gè)交點(diǎn)A,B,線段AB的中點(diǎn)為M.直線OM的斜率與l的斜率的乘積為(  )
A.$\frac{b^2}{a^2}$B.-$\frac{b^2}{a^2}$
C.-$\frac{c^2}{a^2}$D.不確定,隨A,B的變化而變化

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.l是經(jīng)過(guò)雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)焦點(diǎn)F且與實(shí)軸垂直的直線,A,B是雙曲線C的兩個(gè)頂點(diǎn),若在l上存在一點(diǎn)P,使∠APB=60°,則雙曲線的離心率的最大值為( 。
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知tanα=2,則tan(α+$\frac{π}{4}$)=-3,cos2α=$\frac{1}{5}$,$\frac{sinα}{sinα+cosα}$=$\frac{2}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案