2.已知數(shù)列{an}中,a3=$\frac{7}{6}$,a7=$\frac{15}{14}$,且{$\frac{1}{{a}_{n}-1}$}是等差數(shù)列,則a5=(  )
A.$\frac{10}{9}$B.$\frac{11}{10}$C.$\frac{12}{11}$D.$\frac{13}{12}$

分析 設(shè)等差數(shù)列{$\frac{1}{{a}_{n}-1}$}的公差為d,則$\frac{1}{{a}_{7}-1}$=$\frac{1}{{a}_{3}-1}$+4d,解出d,即可得出.

解答 解:設(shè)等差數(shù)列{$\frac{1}{{a}_{n}-1}$}的公差為d,
則$\frac{1}{{a}_{7}-1}$=$\frac{1}{{a}_{3}-1}$+4d,
∴$\frac{1}{\frac{15}{14}-1}$=$\frac{1}{\frac{7}{6}-1}$+4d,
解得d=2.
∴$\frac{1}{{a}_{5}-1}$=$\frac{1}{{a}_{3}-1}$+2d=10,
解得a5=$\frac{11}{10}$.
故選:B.

點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)f(x)=|2x+1|,x∈R
(1)求不等式|f(x)-2|≤5的解集;
(2)若g(x)=$\frac{1}{f(x)+f(x-1)+m}$的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)p:函數(shù)f(x)=x3-3x-a在x∈[$-\frac{1}{2}$,$\sqrt{3}$]內(nèi)有零點(diǎn);q:a>0,函數(shù)g(x)=x2-alnx在區(qū)間$(0,\frac{a}{2})$內(nèi)是減函數(shù).若p和q有且只有一個為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=|x2-2x-8|.
(Ⅰ)畫出函數(shù)f(x)的圖象.
(Ⅱ)求不等式f(x)≥5的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若關(guān)于x的方程2sin(2x+$\frac{π}{6}$)+a-1=0(a∈R)在區(qū)間[0,$\frac{π}{2}$]上有兩個不相等的實(shí)根x1,x2,則( 。
A.x1+x2>|a+1|1.1
B.x1+x2<|a+1|1.1
C.x1+x2=|a+1|1.1
D.x1+x2與|a+1|1.1的大小關(guān)系無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}\\;x<0}\\{g(x)\\;x>0}\end{array}\right.$,若f(x)是奇函數(shù),則g(2)的值是( 。
A.-4B.-2C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若θ∈(0,π),且sinθ+cosθ=$\frac{1}{5}$,則曲線$\frac{{x}^{2}}{sinθ}-\frac{{y}^{2}}{cosθ}$=1是( 。
A.焦點(diǎn)在x軸上的橢圓B.焦點(diǎn)在y軸上的橢圓
C.焦點(diǎn)在x軸上的雙曲線D.焦點(diǎn)在y軸上的雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知二次函數(shù)f(x)=ax2+bx的圖象過點(diǎn)(-4n,0),且f′(0)=2n,n∈N*,數(shù)列{an}滿足$\frac{1}{{{a_{n+1}}}}={f^′}({\frac{1}{a_n}})$,且a1=4.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記${b_n}=\sqrt{{a_n}{a_{n+1}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn
(3)并求出Tn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知集合M={x|(x+2)(x-5)>0},集合N={x|(x-a)(x-2a+1)<0},若M∩N=N,則實(shí)數(shù)a的取值范圍是(-∞,-2]∪{1}∪[5,+∞).

查看答案和解析>>

同步練習(xí)冊答案