一彈簧在彈性限度內(nèi),拉伸彈簧所用的力與彈簧伸長的長度成正比.如果20N的力能使彈簧伸長3cm,則把彈簧從平衡位置拉長6cm(在彈性限度內(nèi))時所做的功為
 
.(單位:焦耳)
考點:定積分
專題:導數(shù)的概念及應用
分析:做功就是在力的方向上通過的距離進行積分,結(jié)合公式和運算律,認真運算求解即可.
解答: 解:設拉伸彈簧所用的力為f(x),彈簧伸長的長度為xm,f(x)=kx.
由F=20N,x=0.03m,
即20=0.03k,k=
2000
3

則f(x)=
2000
3
x,
則把彈簧從平衡位置拉長6cm(在彈性限度內(nèi))時所做的功為:
0.06
0
2000
3
xdx
=
1000
3
x2
|
0.06
0
=1.2,
故答案為:1.2
點評:本題考查定積分在物理中的簡單應用,根據(jù)條件求出常數(shù)的k是解決本題的關(guān)鍵,比較基礎.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在正方體ABCD-A1B1C1D1中,求平面A1DC1與平面ADD1A1所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,AC=1,AB=
2
,BC=
3
,AA1=
2

(Ⅰ)求證:A1B⊥B1C;
(Ⅱ)求二面角A1-B1C-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

探究函數(shù)f(x)=x+
4
x
,x∈(0,+∞)
的最小值,并確定取得最小值時x的值.列表如下:
x0.511.51.71.922.12.22.33457
y8.554.174.054.00544.0054.024.044.355.87.57
請觀察表中y值隨x值變化的特點,完成以下的問題.
(1)寫出f(x)=x+
4
x
,x∈(0,+∞)
的單調(diào)區(qū)間;
(2)證明:函數(shù)f(x)=x+
4
x
(x>0)
在區(qū)間(0,2)單調(diào)遞減;
(3)若不等式2x-2k≤1-
8
x
對x<0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l的參數(shù)方程為:
x=2t
y=1+4t
(t為參數(shù)),圓C的極坐標方程為ρ=2cosθ,則圓C的圓心到直線l的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若不等式4x2+9y2≥2kxy對一切正數(shù)x,y恒成立,則整數(shù)k的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
,
b
滿足|
a
|=|
b
|=1,且
a
,
b
的夾角為
π
3
,O為平面直角坐標系的原點,點A、B滿足
OA
=2
a
+
b
,
OB
=3
a
-
b
,則△OAB的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=-x2+2x+1的值域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點F1、F2分別是橢圓
x2
a2
+
y2
b2
=1的左、右焦點,過F1且垂直于x軸的直線與橢圓交于A、B兩點,若△ABF2為正三角形,則該橢圓的焦距與長軸的比值為
 

查看答案和解析>>

同步練習冊答案