7.已知二次函數(shù)f(x)=x2-16x+q+3
(1)若函數(shù)在區(qū)間[-1,1]上存在零點(diǎn),求實(shí)數(shù)q的取值范圍;
(2)問(wèn):是否存在常數(shù)q(0<q<10),使得當(dāng)x∈[q,10]時(shí),f(x)的最小值為-51?若存在,求出q的值,若不存在,說(shuō)明理由.

分析 (1)若函數(shù)在區(qū)間[-1,1]上存在零點(diǎn),則$\left\{\begin{array}{l}f(-1)≥0\\ f(1)≤0\end{array}\right.$,即$\left\{\begin{array}{l}q+20≥0\\ q-12≤0\end{array}\right.$,解得實(shí)數(shù)q的取值范圍;
(2)假定存在滿足條件的q值,結(jié)合二次函數(shù)的圖象和性質(zhì),對(duì)q進(jìn)行分類討論,最后綜合討論結(jié)果,可得答案.

解答 解:(1)若二次函數(shù)f(x)=x2-16x+q+3的圖象是開(kāi)口朝上,且以直線x=8為對(duì)稱軸的拋物線,
故函數(shù)在區(qū)間[-1,1]上為減函數(shù),
若函數(shù)在區(qū)間[-1,1]上存在零點(diǎn),
則$\left\{\begin{array}{l}f(-1)≥0\\ f(1)≤0\end{array}\right.$,即$\left\{\begin{array}{l}q+20≥0\\ q-12≤0\end{array}\right.$,
解得:q∈[-20,12];
(2)若存在常數(shù)q(0<q<10),使得當(dāng)x∈[q,10]時(shí),f(x)的最小值為-51,
當(dāng)0<q≤8時(shí),f(8)=q-61=-51,解得:q=10(舍去),
當(dāng)8<q<10時(shí),f(q)=q2-15q+3=-51,解得:q=9,或q=6(舍去),
綜上所述,存在q=9,使得當(dāng)x∈[q,10]時(shí),f(x)的最小值為-51.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某校為了調(diào)查“學(xué)業(yè)水平考試”學(xué)生的數(shù)學(xué)成績(jī),隨機(jī)地抽取該校甲、乙兩班各10名同學(xué),獲得的數(shù)據(jù)如下:(單位:分)
132108112121113121118127118129
133107120113122114125118129127
(1)以百位和十位為莖,個(gè)位為葉,在圖中作出甲、乙兩班學(xué)生數(shù)學(xué)成績(jī)的莖葉圖,并判列哪個(gè)班的平均水平較高;
(2)若數(shù)學(xué)成績(jī)不低于128分,稱為“優(yōu)秀”,求從甲班這10名學(xué)生中隨機(jī)選取3名,至多有1名“優(yōu)秀”的概率.
(3)以這20人的樣本數(shù)據(jù)來(lái)估計(jì)整個(gè)學(xué)校的總體成績(jī),若從該校(人數(shù)很多)任選3人,記X表示抽到“優(yōu)秀”學(xué)生的人數(shù),求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知數(shù)列{an}通項(xiàng)an=10n(n∈N*),${b_n}=\frac{1}{{lg{a_n}•lg{a_{n+2}}}}$,則數(shù)列{bn}前n項(xiàng)和為( 。
A.$1-\frac{1}{n+2}$B.$1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}$
C.$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$D.$2(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)全集U=R,A={x|x(x-2)<0},B={x|x<1},則圖中陰影部分表示的集合為( 。
A.{x|x≥1}B.{x|1≤x<2}C.{x|x≤1}D.{x|0<x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若x,y滿足約束條件$\left\{\begin{array}{l}{x-y≤0}\\{x+y≥0}\\{x+3y-3≤0}\end{array}\right.$,則z=2x-y的最大值為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.計(jì)算下列各式的值
(1)log3$\sqrt{27}$+lg25+lg4$+{({0.125})^{\frac{1}{3}}}$
(2)已知a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$=3,求值:$\frac{{a+{a^{-1}}}}{{{a^2}+{a^{-2}}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若無(wú)窮等比數(shù)列{an}的前n項(xiàng)和為Sn,首項(xiàng)為1,公比為a-1.5,且$\lim_{n→∞}{S_n}$=a,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某研究性學(xué)習(xí)小組對(duì)某花卉種子的發(fā)芽率與晝夜溫差之間的關(guān)系進(jìn)行研究.他們分別記錄了3月1日至3月5日的晝夜溫差及每天30顆種子的發(fā)芽數(shù),并得到如下資料:
日期3月1日3月2日3月3日3月4日3月5日
溫差x (度)101113129
發(fā)芽數(shù)y(顆)1516171413
參考數(shù)據(jù)$\sum_{i=1}^{5}{x}_{i}{y}_{i}=832$,${\sum_{i=1}^{5}x}_{i}^{2}=615$,其中b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}-b\overline{x}$
(1)請(qǐng)根據(jù)3月1日至3月5日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程.據(jù)氣象預(yù)報(bào)3月6日的晝夜溫差為11℃,請(qǐng)預(yù)測(cè)3月6日浸泡的30顆種子的發(fā)芽數(shù).(結(jié)果保留整數(shù))
(2)從3月1日至3月5日中任選兩天,
①求種子發(fā)芽數(shù)恰有1天超過(guò)15顆的概率.
②若已知有一天種子發(fā)芽數(shù)是15顆,求另一天超過(guò)15顆的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.?dāng)?shù)列-1,a,b,c,-9成等比數(shù)列,則實(shí)數(shù)b的值為( 。
A.±3B.3C.-3D.以上都不對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案