分析 先根據(jù)導數(shù)定義,表示函數(shù)f(x)在x0的導數(shù)f'(x0)=$\frac{1}{2}$$\underset{lim}{△x→0}$$\frac{f({x}_{0}+△x)-f({x}_{0}-△x)}{△x}$,進而求得原式的值.
解答 解:根據(jù)導數(shù)的定義,函數(shù)f(x)在x0的導數(shù)為:
f'(x0)=$\underset{lim}{△x→0}$$\frac{f({x}_{0}+△x)-f({x}_{0}-△x)}{({x}_{0}+△x)-({x}_{0}-△x)}$
=$\underset{lim}{△x→0}$$\frac{f({x}_{0}+△x)-f({x}_{0}-△x)}{2△x}$
=$\frac{1}{2}$•$\underset{lim}{△x→0}$$\frac{f({x}_{0}+△x)-f({x}_{0}-△x)}{△x}$,
所以,$\underset{lim}{△x→0}$$\frac{f({x}_{0}+△x)-f({x}_{0}-△x)}{△x}$=2f'(x0),
即原式=2f'(x0),
故答案為:2f'(x0).
點評 本題主要考查了極限及其運算,涉及導數(shù)的定義和應用,合理的恒等變形是解決本題的關(guān)鍵,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,+∞) | B. | (0,2] | C. | {0,1,2} | D. | {1,2} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com