18.若實(shí)數(shù)ai(i=1,2,3,…,2015)滿足:a1+a2+a3+…+a2015=0,且|a1-2a2|=|a2-2a3|=…=|a2014-2a2015|=|a2015-2a1|,證明:對(duì)任意i=1,2,3,…,2015,有ai=0.

分析 由a1+a2+a3+…+a2015=0,可得:(a1-2a2)+(a2-2a3)+…+(a2015-2a1)=0,由已知|a1-2a2|=|a2-2a3|=…=|a2014-2a2015|=|a2015-2a1|,可得|a1-2a2|=|a2-2a3|=…=|a2014-2a2015|=|a2015-2a1|=0.即可證明.

解答 證明:由a1+a2+a3+…+a2015=0,則a1+a2+a3+…+a2015=2(a1+a2+a3+…+a2015)=0,
∴(a1-2a2)+(a2-2a3)+…+(a2015-2a1)=0,
∵|a1-2a2|=|a2-2a3|=…=|a2014-2a2015|=|a2015-2a1|,
∴|a1-2a2|=|a2-2a3|=…=|a2014-2a2015|=|a2015-2a1|=0.
∴a1=2a2,a2=2a3,…a2014=2a2015,a2015=2a1,
可得:a1=a2=a3=…=a2014=a2015=0,
對(duì)任意i=1,2,3,…,2015,有ai=0.

點(diǎn)評(píng) 本題考查了絕對(duì)值的意義、數(shù)列遞推關(guān)系,考查了變形能力、推理能力與計(jì)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖所示,在四邊形ABCD中,cosB=$\frac{\sqrt{3}}{3}$,∠D=2∠B,AD=1,且△ACD的面積為$\sqrt{2}$
(1)求CD的長(zhǎng)度;
(2)若BC=2$\sqrt{3}$,求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別a,b,c.a(chǎn)-2b+c=0,3a+b-2c=0,求sinA:sinB:sinC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知O為坐標(biāo)原點(diǎn),P(x,y)為函數(shù)y=1+lnx圖象上一點(diǎn),記直線OP的斜率k=f(x).
(1)若函數(shù)f(x)在區(qū)間$(m,m+\frac{1}{2})(m>0)$上存在極值,求實(shí)數(shù)m的取值范圍;
(2)?x∈[1,+∞),使$f(x)≤\frac{t}{x+1}$,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等邊三角形,直線x+y+2$\sqrt{2}$-1=0與以橢圓C的右焦點(diǎn)為圓心,橢圓的長(zhǎng)半軸為半徑的圓相切.
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)B,C,D是橢圓上不同于橢圓頂點(diǎn)的三點(diǎn),點(diǎn)B與點(diǎn)D關(guān)于原點(diǎn)O對(duì)稱,設(shè)直線CD,CB,OB,OC的斜率分別為k1,k2,k3,k4,且k1k2=k3k4
(i)求k1k2的值;
(ii)求OB2+OC2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知圓E過定點(diǎn)A(a,0)(a>0),圓心E在拋物線C:y2=2ax上運(yùn)動(dòng),MN為圓E在y軸上截得的弦.
(Ⅰ)求證:不論圓心E如何變化,弦MN的長(zhǎng)是個(gè)定值;
(Ⅱ)O為坐標(biāo)原點(diǎn),當(dāng)|OA|是|OM|與|ON|的等差中項(xiàng)時(shí),拋物線C的準(zhǔn)線與圓E有怎樣的位置關(guān)系?請(qǐng)說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知集合P={x|-x2+2x≤0},Q={x|1<x≤3},則(∁RP)∩Q等于( 。
A.[1,3]B.(2,3]C.(1,2)D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.命題“?x0∈(0,$\frac{π}{2}$),cosx0>sinx0”的否定是( 。
A.?x0∈(0,$\frac{π}{2}$),cosx0≤sinx0B.?x∈(0,$\frac{π}{2}$),cosx≤sinx
C.?x∈(0,$\frac{π}{2}$),cosx>sinxD.?x0∉(0,$\frac{π}{2}$),cosx0>sinx0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若(x2-a)(x+$\frac{1}{x}$)10的展開式x6的系數(shù)為30,則a等于( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案