分析 如圖所示,取BC的中點D,連接OD,AD,可得OD⊥BC,$\overrightarrow{AD}$=$\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$.又$\overrightarrow{AO}=\overrightarrow{DO}-\overrightarrow{DA}$,可得$\overrightarrow{AO}$•$\overrightarrow{BC}$=$(\overrightarrow{DO}-\overrightarrow{DA})$•$\overrightarrow{BC}$=$\overrightarrow{AD}•\overrightarrow{BC}$=$\frac{1}{2}({\overrightarrow{AC}}^{2}-{\overrightarrow{AB}}^{2})$=$(b-\frac{1}{2})^{2}$-$\frac{1}{4}$,再利用二次函數(shù)的單調(diào)性即可得出.
解答 解:如圖所示,
取BC的中點D,連接OD,AD.
則OD⊥BC,
$\overrightarrow{AD}$=$\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$.
∴$\overrightarrow{OD}•\overrightarrow{BC}$=0.
又$\overrightarrow{AO}=\overrightarrow{DO}-\overrightarrow{DA}$,
∴$\overrightarrow{AO}$•$\overrightarrow{BC}$=$(\overrightarrow{DO}-\overrightarrow{DA})$•$\overrightarrow{BC}$
=$\overrightarrow{AD}•\overrightarrow{BC}$
=$\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$•$(\overrightarrow{AC}-\overrightarrow{AB})$
=$\frac{1}{2}({\overrightarrow{AC}}^{2}-{\overrightarrow{AB}}^{2})$
=$\frac{1}{2}(^{2}-{c}^{2})$
=b2-b
=$(b-\frac{1}{2})^{2}$-$\frac{1}{4}$≥$\frac{1}{4}$,當(dāng)且僅當(dāng)b=$\frac{1}{2}$時取等號.
∴$\overrightarrow{AO}$•$\overrightarrow{BC}$的最小值為:$\frac{1}{4}$.
點評 本題考查了垂經(jīng)定理、數(shù)量積運算性質(zhì)、向量垂直與數(shù)量積的關(guān)系、二次函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | { x|0≤x≤2} | B. | { x|1≤x≤2} | C. | {1,2 } | D. | Φ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,4] | B. | [2,4] | C. | [1,3] | D. | [2,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{81}$ | B. | -$\frac{1}{81}$ | C. | $\frac{1}{27}$ | D. | -$\frac{1}{27}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com