16.設(shè)O是△ABC三邊中垂線的交點,a,b,c分別是角A,B,C的對邊,已知b2-2b+c2=O,求$\overrightarrow{AO}$•$\overrightarrow{BC}$的最小值.

分析 如圖所示,取BC的中點D,連接OD,AD,可得OD⊥BC,$\overrightarrow{AD}$=$\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$.又$\overrightarrow{AO}=\overrightarrow{DO}-\overrightarrow{DA}$,可得$\overrightarrow{AO}$•$\overrightarrow{BC}$=$(\overrightarrow{DO}-\overrightarrow{DA})$•$\overrightarrow{BC}$=$\overrightarrow{AD}•\overrightarrow{BC}$=$\frac{1}{2}({\overrightarrow{AC}}^{2}-{\overrightarrow{AB}}^{2})$=$(b-\frac{1}{2})^{2}$-$\frac{1}{4}$,再利用二次函數(shù)的單調(diào)性即可得出.

解答 解:如圖所示,
取BC的中點D,連接OD,AD.
則OD⊥BC,
$\overrightarrow{AD}$=$\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$.
∴$\overrightarrow{OD}•\overrightarrow{BC}$=0.
又$\overrightarrow{AO}=\overrightarrow{DO}-\overrightarrow{DA}$,
∴$\overrightarrow{AO}$•$\overrightarrow{BC}$=$(\overrightarrow{DO}-\overrightarrow{DA})$•$\overrightarrow{BC}$
=$\overrightarrow{AD}•\overrightarrow{BC}$
=$\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$•$(\overrightarrow{AC}-\overrightarrow{AB})$
=$\frac{1}{2}({\overrightarrow{AC}}^{2}-{\overrightarrow{AB}}^{2})$
=$\frac{1}{2}(^{2}-{c}^{2})$
=b2-b
=$(b-\frac{1}{2})^{2}$-$\frac{1}{4}$≥$\frac{1}{4}$,當(dāng)且僅當(dāng)b=$\frac{1}{2}$時取等號.
∴$\overrightarrow{AO}$•$\overrightarrow{BC}$的最小值為:$\frac{1}{4}$.

點評 本題考查了垂經(jīng)定理、數(shù)量積運算性質(zhì)、向量垂直與數(shù)量積的關(guān)系、二次函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知過點M(1,0)的直線l與橢圓$\frac{{x}^{2}}{4}+{y}^{2}=1$交于兩點A、B,且$\overline{AM}=2\overline{MB}$,則直線l的斜率是±$\frac{\sqrt{15}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合 A={ x|x-1≥0},B={ x|x2-x-2≤0},則 A∩B=( 。
A.{ x|0≤x≤2}B.{ x|1≤x≤2}C.{1,2 }D.Φ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.計算${∫}_{0}^{π}$(x2-sinx)dx=$\frac{{π}^{3}}{3}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)數(shù)列{an}的前n項和為Sn,且nSn+(n+2)an=4n,則Sn=4-$\frac{n+2}{{2}^{n-1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知圓x2+y2=4的圓心為O,點P是直線l:mx-y-6m+4=0上的點,若該圓上存在點Q使得∠OPQ=30°,則實數(shù)m的取值范圍為0≤m≤$\frac{12}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.△ABC中,若a=2,b=2$\sqrt{3}$,c=3,則三角形中最大角的正弦值為$\frac{\sqrt{143}}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.點(1,1)在不等式組$\left\{\begin{array}{l}{mx+ny≤2}\\{ny-mx≤2}\\{ny≥1}\end{array}\right.$表示的平面區(qū)域內(nèi),則m2+n2取值范圍是( 。
A.[1,4]B.[2,4]C.[1,3]D.[2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在等比數(shù)列{an}中,a1=3,q=-$\frac{1}{3}$,則a5=( 。
A.$\frac{1}{81}$B.-$\frac{1}{81}$C.$\frac{1}{27}$D.-$\frac{1}{27}$

查看答案和解析>>

同步練習(xí)冊答案