4.計(jì)算${∫}_{0}^{π}$(x2-sinx)dx=$\frac{{π}^{3}}{3}$-2.

分析 根據(jù)定積分的計(jì)算法則計(jì)算即可.

解答 解:${∫}_{0}^{π}$(x2-sinx)dx=($\frac{1}{3}{x}^{3}$+cosx)|${\;}_{0}^{π}$=$\frac{{π}^{3}}{3}$+cosπ-cos0=$\frac{{π}^{3}}{3}$-2.
故答案為:$\frac{{π}^{3}}{3}$-2.

點(diǎn)評(píng) 本題考查了定積分的計(jì)算,關(guān)鍵是求出原函數(shù),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若sin$\frac{α}{2}$=$\frac{1}{3}$,則cos(π+α)等于( 。
A.-$\frac{7}{9}$B.$\frac{7}{9}$C.-$\frac{5}{9}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.f(x)=ln(1+2|x|)-$\frac{2}{1+{x}^{2}}$,則f(2x+1)<f(x-2)的解為(-3,$\frac{1}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知tan($\frac{π}{4}$+α)=2,則sin2α=( 。
A.-$\frac{1}{3}$B.$\frac{1}{3}$C.-$\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知集合A={x|x2-3x+2≤0},函數(shù)f(x)=x2-2ax+1.
(1)當(dāng)a≠0時(shí),解關(guān)于x的不等式f(x)≤3a2+1;
(2)若命題“存在x0∈A,使得f(x0)≤A”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知f(x)是偶函數(shù),它在[0,+∞)上是增函數(shù),若f(lgx)>f(-1).則x的取值范圍是( 。
A.($\frac{1}{10}$,1)B.(0,$\frac{1}{10}$)∪(10,+∞)C.($\frac{1}{10}$,10)D.(0,1)∪(10,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)O是△ABC三邊中垂線的交點(diǎn),a,b,c分別是角A,B,C的對(duì)邊,已知b2-2b+c2=O,求$\overrightarrow{AO}$•$\overrightarrow{BC}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列函數(shù)中,在各自定義域上既為增函數(shù)又為奇函數(shù)的是( 。
A.f(x)=x|x|B.f(x)=x2+2C.f(x)=2x-1D.f(x)=-x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知a=8,b=-2,求[a${\;}^{-\frac{1}{2}}$b(ab-2)${\;}^{-\frac{1}{2}}$(a-1-${\;}^{\frac{2}{3}}$]2的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案