17.某學(xué)校三個(gè)社團(tuán)的人員分布如下表(每名同學(xué)只參加一個(gè)社團(tuán))
圍棋社戲劇社書法社
高中4530a
初中151020
學(xué)校要對(duì)這三個(gè)社團(tuán)的活動(dòng)效果進(jìn)行抽樣調(diào)查,按分層抽樣的方法從社團(tuán)成員中抽取30人,結(jié)果圍棋社被抽出12人.則這三個(gè)社團(tuán)共有( 。
A.130人B.140人C.150人D.160人

分析 根據(jù)圍棋社共有60人,按分層抽樣的方法從社團(tuán)成員中抽取30人,結(jié)果圍棋社被抽出12人,得到三個(gè)社團(tuán)的總?cè)藬?shù).

解答 解::(I)圍棋社共有60人,
由$\frac{45+15}{12}$×30=150,可知三個(gè)社團(tuán)一共有150人,
故選:C.

點(diǎn)評(píng) 本題主要考查分層抽樣的定義和方法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.給出下列五種說法:
(1)函數(shù)y=ax(a>0,a≠1)與函數(shù)y=x2的定義域相同;
(2)函數(shù)y=$\sqrt{x}$與函數(shù)y=lnx的值域相同;
(3)函數(shù)y=log3(x2-2x-3)的單調(diào)增區(qū)間是[1,+∞);
(4)函數(shù)y=$\frac{1}{2}+\frac{1}{{{2^x}-1}}$與y=$\frac{{{{(1+{2^x})}^2}}}{{x•{2^x}}}$都是奇函數(shù);
(5)記函數(shù)f(x)=x-[x](注:[x]表示不超過x的最大整數(shù),例如:[3.2]=3,[-2.3]=-3),則f(x)的值域是[0,1).其中所有正確的序號(hào)是(1)(4)(5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在y軸上的截距為2,且與直線y=-3x-4垂直的直線的斜截式方程為( 。
A.$y=\frac{1}{3}x+2$B.$y=-\frac{1}{3}x-2$C.y=-3x+2D.y=3x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.下列命題:
(1)y=|cos(2x+$\frac{π}{6}$)|最小正周期為π;
(2)函數(shù)y=tan$\frac{x}{2}$的圖象的對(duì)稱中心是(kπ,0),k∈Z;
(3)f(x)=tanx-sinx在(-$\frac{π}{2}$,$\frac{π}{2}$)上有3個(gè)零點(diǎn);
(4)若$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow∥\overrightarrow{c}$,則$\overrightarrow{a}∥\overrightarrow{c}$
其中錯(cuò)誤的是(1)(3)(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.用最小二乘法計(jì)算利潤(rùn)額y對(duì)銷售額x的回歸直線方程,當(dāng)銷售額為4(千萬元)時(shí),估計(jì)利潤(rùn)額的大。ā 。
商店名稱ABCDE
銷售額x(千萬元)35679
利潤(rùn)額y(百萬元)23345
A.2.3B.3.2C.4.2D.2.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.直線l過點(diǎn)P(-1,2)且與以點(diǎn)M(-3,-2)、N(4,0)為端點(diǎn)的線段恒相交,則l的斜率取值范圍是(  )
A.[-$\frac{2}{5}$,5]B.[-$\frac{2}{5}$,0)∪(0,2]C.(-∞,-$\frac{2}{5}$]∪[5,+∞)D.(-∞,-$\frac{2}{5}$]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,在四面體ABCD,AB=CD,M,N分別是BC,AD的中點(diǎn),若AB與CD所成的角的大小為60°,則MN和CD所成的角的大小為30°或60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.化簡(jiǎn)求值:已知α為第三象限角,且$cos(α-\frac{π}{2})=-\frac{1}{5}$,求$\frac{sin(2π-α)cos(π+α)tan(π-α)}{tan(π+α)sin(π-α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在△ABC中,已知AB=4,AC=7,BC=9,則邊BC上的中線長(zhǎng)為$\frac{7}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案