3.等差數(shù)列{an}中,若a3=5,則a1+2a4=15.

分析 設(shè){an}的首項為a1,公差為d,由等差數(shù)列的通項公式可得a1+2d=5,進而分析可得a1+2a4=a1+2(a1+3d)=3(a1+2d),代入數(shù)據(jù)計算可得答案.

解答 解:根據(jù)題意,設(shè){an}的首項為a1,公差為d,
若a3=5,則a1+2d=5,
那么a1+2a4=a1+2(a1+3d)=3(a1+2d)=3×5=15;
故答案為:15.

點評 本題考查等差數(shù)列的通項公式的運用,關(guān)鍵是充分利用等差數(shù)列的通項公式分析(a1+2a4)與a3的關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在等差數(shù)列{an}中,若a4=1,a7=-5,則它的前10項和S10=-20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=2016x-sinx的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.根據(jù)條件寫出直線的點斜式方程:經(jīng)過點(4,6),斜率是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知$\overrightarrow{a}$=(3,4),$\overrightarrow$=(-1,2),且$\overrightarrow{a}$與$\overrightarrow{a}$+$λ\overrightarrow$的夾角為銳角,則實數(shù)λ的取值范圍是(-5,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在△ABC中,角A,B,C的對邊分別為a,b,c,已知cosC=-$\frac{1}{4}$,c=2b,則sin(A-B)=$\frac{5\sqrt{15}}{64}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知在等比數(shù)列{an}中,Sn是{an}的前n項和,a1+a3=10,S4=15,則該數(shù)列的公比等于( 。
A.2B.$\frac{2}{3}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=sinωx(ω>0)在區(qū)間(-$\frac{2π}{3}$,$\frac{π}{3}$)上有且只有2個極值點,則ω的取值范圍是( 。
A.[$\frac{3}{2}$,$\frac{9}{4}$]B.($\frac{3}{2}$,$\frac{9}{4}$)C.($\frac{3}{2}$,$\frac{9}{4}$]D.[$\frac{3}{2}$,$\frac{9}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,a=2,A=60°,則△ABC面積的最大值為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{6}$

查看答案和解析>>

同步練習(xí)冊答案