分析 先畫出圖象,再根據(jù)條件即可求出其范圍.不妨設(shè)a<b<c,利用f(a)=f(b)=f(c),可得-log2a=log2b=-$\frac{1}{2}$c+6,由此可確定ab+c的取值范圍.
解答 解:根據(jù)已知畫出函數(shù)圖象:
∵f(a)=f(b)=f(c),∴-log2a=log2b=-$\frac{1}{2}$c+6,
∴l(xiāng)og2(ab)=0,0<-$\frac{1}{2}$c+6<2,
解得ab=1,10<c<12,
∴11<ab+c<13.
故答案為:(11,13).
點評 本題考查分段函數(shù),考查絕對值函數(shù),考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
編號 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 |
直徑 | 1.51 | 1.49 | 1.49 | 1.51 | 1.49 | 1.48 | 1.47 | 1.53 | 1.52 | 1.47 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f(\frac{{{x_1}+{x_2}}}{2})$<$\frac{{f({x_1})+f({x_2})}}{2}$ | B. | $f(\frac{{{x_1}+{x_2}}}{2})$>$\frac{{f({x_1})+f({x_2})}}{2}$ | ||
C. | $f(\frac{{{x_1}+{x_2}}}{2})$=$\frac{{f({x_1})+f({x_2})}}{2}$ | D. | 無法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | -$\frac{1}{3}$ | C. | 3 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com