分析 (Ⅰ)①欲證證明f(x)的圖象與x軸有兩個(gè)交點(diǎn),只須由△>0得圖象與x軸有兩個(gè)交點(diǎn)即可;
②利用韋達(dá)定理的推論,求出AB,可得緒論;
(Ⅱ)根據(jù)函數(shù)的凸凹性可得結(jié)論.
解答 證明:(Ⅰ)①由f(1)=0得a+b+c=0,即b=-a-c
∵a>b>c,
∴△=b2-4ac=(-a-c)2-4ac=(a-c)2>0
∴f(x)的圖象與x軸有兩個(gè)交點(diǎn);
解:②由①得:a>0,
∴|AB|=$\frac{\sqrt{△}}{\left|a\right|}$=$\frac{a-c}{a}$∈(1,3).
證明:(Ⅱ)由(Ⅰ)中①得a>0,
故f(x)為凹函數(shù),
∵x1<x2,f(x1)≠f(x2),
故y=f(x),x∈(x1,x2)與y=$\frac{f({x}_{1})+f({x}_{2})}{2}$有且只有一個(gè)交點(diǎn),
故方程f(x)=$\frac{f({x}_{1})+f({x}_{2})}{2}$,必有一根在區(qū)間(x1,x2)內(nèi).
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì)是解答的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $({\frac{1}{4},+∞})$ | B. | (0,$\frac{1}{4}$) | C. | $({-∞,\frac{1}{4}})$ | D. | $({-∞,\frac{1}{4}})∪({\frac{1}{4},+∞})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(-1)-f(2)>0 | B. | f(1)-f(-2)=0 | C. | f(1)-f(2)<0 | D. | f(-1)+f(2)<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $f(\frac{{{x_1}+{x_2}}}{2})$<$\frac{{f({x_1})+f({x_2})}}{2}$ | B. | $f(\frac{{{x_1}+{x_2}}}{2})$>$\frac{{f({x_1})+f({x_2})}}{2}$ | ||
C. | $f(\frac{{{x_1}+{x_2}}}{2})$=$\frac{{f({x_1})+f({x_2})}}{2}$ | D. | 無(wú)法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com