16.下列四個(gè)命題,其中正確命題的個(gè)數(shù)( 。
①若a>|b|,則a2>b2
②若a>b,c>d,則a-c>b-d 
③若a>b,c>d,則ac>bd 
④若a>b>o,則$\frac{c}{a}$>$\frac{c}$.
A.3個(gè)B.2個(gè)C.1個(gè)D.0個(gè)

分析 直接由不等式的可乘積性判斷①;舉例說(shuō)明②③④錯(cuò)誤.

解答 解:①若a>|b|,則a2>b2,①正確;
②若a>b,c>d,則a-c>b-d錯(cuò)誤,如3>2,-1>-3,而3-(-1)=4<5=2-(-3); 
③若a>b,c>d,則ac>bd錯(cuò)誤,如3>1,-2>-3,而3×(-2)<1×(-3); 
④若a>b>o,則$\frac{1}{a}<\frac{1}$,當(dāng)c>0時(shí),$\frac{c}{a}$<$\frac{c}$,④錯(cuò)誤.
∴正確命題的個(gè)數(shù)只有1個(gè).
故選:C.

點(diǎn)評(píng) 本題考查命題的真假判斷與應(yīng)用,考查了不等式的基本性質(zhì),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.下列四種說(shuō)法:
①函數(shù)y=$\frac{{x}^{2}-x+4}{x-1}(x>1)$的最小值為5;
②等差數(shù)列{an}中,a1,a3,a4成等比數(shù)列,則公比為$\frac{1}{2}$;
③已知a>0,b>0,a+b=1,則$\frac{2}{a}+\frac{3}$的最小值為5+2$\sqrt{6}$;
④在平面直角坐標(biāo)系xOy中,已知平面區(qū)域A={(x,y)|x+y≤1,x≥0,y≥0},則平面區(qū)域B={(x+y,x-y)|(x,y)∈A}的面積是1.
其中正確的命題為①③④(填上所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖,給出了偶函數(shù)y=f(x)的局部圖象,根據(jù)圖象信息下列結(jié)論正確的是( 。  
A.f(-1)-f(2)>0B.f(1)-f(-2)=0C.f(1)-f(2)<0D.f(-1)+f(2)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=ax2+bx+c(a>0),對(duì)于任意的x1,x2(x1≠x2),則$f(\frac{{{x_1}+{x_2}}}{2})$與$\frac{{f({x_1})+f({x_2})}}{2}$的大小關(guān)系是(  )
A.$f(\frac{{{x_1}+{x_2}}}{2})$<$\frac{{f({x_1})+f({x_2})}}{2}$B.$f(\frac{{{x_1}+{x_2}}}{2})$>$\frac{{f({x_1})+f({x_2})}}{2}$
C.$f(\frac{{{x_1}+{x_2}}}{2})$=$\frac{{f({x_1})+f({x_2})}}{2}$D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=x+$\frac{m}{x}$,且此函數(shù)圖象過(guò)點(diǎn)(1,5),
(1)求實(shí)數(shù)m的值,并判斷函數(shù)f(x)的奇偶性;
(2)用單調(diào)性的定義證明函數(shù)f(x)在[1,2]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知公差不為0的等差數(shù)列{an},其前n項(xiàng)和為Sn,若a1,a3,a4成等比數(shù)列,則$\frac{{{S_3}-{S_2}}}{{{S_5}-{S_3}}}$的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知四邊形ABCD為平行四邊形,點(diǎn)A的坐標(biāo)為(-1,2),點(diǎn)C在第二象限,$\overrightarrow{AB}=({2,2}),且\overrightarrow{AB}與\overrightarrow{AC}$的夾角為$\frac{π}{4},\overrightarrow{AB}•\overrightarrow{AC}$=2.
(I)求點(diǎn)D的坐標(biāo);
(II)當(dāng)m為何值時(shí),$\overrightarrow{AC}+m\overrightarrow{AB}與\overrightarrow{BC}$垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)$\frac{π}{4}$<α<$\frac{π}{2}$,試比較角α的正弦線(xiàn)、余弦線(xiàn)和正切線(xiàn)的長(zhǎng)度,如果$\frac{π}{2}$<α<$\frac{3π}{4}$.上述長(zhǎng)度關(guān)系又如何?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=x2+(2a-1)x+6+a2有兩個(gè)零點(diǎn)m,n,且m>2,n>2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案