3.已知m,n是不重合的直線,α,β是不重合的平面,有下列命題
①若α∩β=n,m∥n,則m∥α,m∥β;     
②若m⊥α,m⊥β,則α∥β;
③若m∥α,m⊥n,則n⊥α;             
④若m⊥α,n?α,則m⊥n;
其中所有真命題的序號是( 。
A.②④B.②③C.①④D.①③

分析 在①中,m∥α,m∥β或m?α,m∥β或m∥α,m?β;在②中,由面面平行的判定定理得α∥β;在③中,n與α相交、平行或n?α;在④中,由線面垂直的性質(zhì)定理得m⊥n.

解答 解:由m,n是不重合的直線,α,β是不重合的平面,知:
在①中,若α∩β=n,m∥n,則m∥α,m∥β或m?α,m∥β或m∥α,m?β,故①錯誤;
在②中,若m⊥α,m⊥β,則由面面平行的判定定理得α∥β,故②正確;
在③中,若m∥α,m⊥n,則n與α相交、平行或n?α,故③錯誤;
在④中,若m⊥α,n?α,則由線面垂直的性質(zhì)定理得m⊥n,故④正確.
所有真命題的序號是②④.
故選:A.

點評 本題考查命題真假的判斷,是中檔題,解題時要認真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

13.已知扇形的周長為30厘米,它的面積的最大值為$\frac{225}{4}$;此時它的圓心角α=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知數(shù)列{an}的前n項和為Sn,且滿足:a1=1,a2=2,Sn+1=an+2-an+1(n∈N*),若不等式λSn>an恒成立,則實數(shù)λ的取值范圍是λ>1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=2$\sqrt{3}sin\frac{ωx}{2}cos\frac{ωx}{2}+6{cos^2}\frac{ωx}{2}$-3(ω>0)
(1)若$y=f(x+θ)(0<θ<\frac{π}{2})$是最小正周期為π的偶函數(shù),求ω和θ的值;
(2)若g(x)=f(3x)在$(0,\frac{π}{3})$上是增函數(shù),求ω的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.將某班的60名學生編號為01,02,…,60,采用系統(tǒng)抽樣方法抽取一個容量為5的樣本,且隨機抽得的一個號碼為03,則剩下的四個號碼依次是15,27,39,51.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知平行四邊形ABCD中,AB=2,E為AB的中點,且△ADE是等邊三角形,沿DE把△ADE折起至A1DE的位置,使得A1C=2.

(1)F是線段A1C的中點,求證:BF∥平面A1DE;
(2)求證:A1D⊥CE;
(3)求點A1到平面BCDE的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知中心在原點,焦點在坐標軸上的橢圓E的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)它的離心率為$\frac{{\sqrt{3}}}{3}$,一個焦點是(-1,0),過直線x=3上一點M引橢圓E的兩條切線,切點分別是A和B.
(Ⅰ)求橢圓E的方程;
(Ⅱ)若在橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上的點(x0,y0)處的切線方程是$\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{^{2}}$=1.求證:直線AB恒過定點,并求出定點的坐標;
(Ⅲ)記點C為(Ⅱ)中直線AB恒過的定點,問是否存在實數(shù)λ,使得$|{\overrightarrow{AC}}|+|{\overrightarrow{BC}}|=λ|{\overrightarrow{AC}}|•|{\overrightarrow{BC}}|$成立,若成立求出λ的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.從某校高一年級1000名學生中隨機抽取100名測量身高,測量后發(fā)現(xiàn)被抽取的學生身高全部介于155厘米到195厘米之間,將測量結(jié)果分為八組:第一組[155,160),第二組[160,165),…,第八組[190,195),得到頻率分布直方圖如圖所示.
(Ⅰ)計算第三組的樣本數(shù);并估計該校高一年級1000名學生中身高在170厘米以下的人數(shù);
(Ⅱ)估計被隨機抽取的這100名學生身高的中位數(shù)、平均數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若等邊三角形ABC的邊長為4,E是中線BD的中點,則$\overrightarrow{AE}$•$\overrightarrow{EC}$=( 。
A.1B.-1C.2D.-2

查看答案和解析>>

同步練習冊答案