14.函數(shù)f(x)=3sin(-2x+$\frac{π}{4}$)-2的最小正周期π,單調(diào)增區(qū)間為[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$],k∈Z,對(duì)稱中心是($\frac{kπ}{2}$+$\frac{π}{8}$,-2),k∈Z;對(duì)稱軸為x=$\frac{kπ}{2}$+$\frac{3π}{8}$,k∈Z.

分析 由條件利用正弦函數(shù)的單調(diào)性、以及它的圖象的對(duì)稱性,得出結(jié)論.

解答 解:對(duì)于函數(shù)f(x)=3sin(-2x+$\frac{π}{4}$)-2=-3sin(2x-$\frac{π}{4}$)-2,
令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{4}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{3π}{8}$≤x≤kπ+$\frac{7π}{8}$,可得函數(shù)的增區(qū)間為[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$],k∈Z.
令2x-$\frac{π}{4}$=kπ,求得x=$\frac{kπ}{2}$+$\frac{π}{8}$,故函數(shù)的圖象的對(duì)稱中心為($\frac{kπ}{2}$+$\frac{π}{8}$,-2),k∈Z.
令2x-$\frac{π}{4}$=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{3π}{8}$,可得函數(shù)的圖象的對(duì)稱軸為x=$\frac{kπ}{2}$+$\frac{3π}{8}$,k∈Z.
故答案為:[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$],k∈Z;($\frac{kπ}{2}$+$\frac{π}{8}$,-2),k∈Z;x=$\frac{kπ}{2}$+$\frac{3π}{8}$,k∈Z.

點(diǎn)評(píng) 本題主要考查正弦函數(shù)的單調(diào)性、以及它的圖象的對(duì)稱性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知公差不為0的等差數(shù)列{an},a1,a3,a11成等比數(shù)列,則$\frac{a_1}mgqccan$=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)y=f(x)與y=ax(a>0且a≠1)互為相反數(shù),且f(2)=1,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且滿足4Sn-1=an2+2an,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{a}_{n}({a}_{n}+2)}$,數(shù)列{bn}的前n項(xiàng)和為Tn,證明:$\frac{1}{3}$≤Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求離心率e=$\frac{\sqrt{5}}{2}$,過點(diǎn)P(3,-$\sqrt{2}$)的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若三點(diǎn)A(4,3),B(5,a),C(6,b)共線,則下列結(jié)論正確的是( 。
A.2a-b=3B.b-a=1C.a=3,b=5D.a-2b=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知sin(π-α)-cos(π+α)=$\frac{\sqrt{2}}{3}$,其中0<α<π,求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求下列函數(shù)的值域:
(1)y=$\frac{x}{x-4}$(0≤x≤6且x≠4);
(2)y=$\frac{3x}{2x-4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在等腰△ABC中,AB=AC,|$\overrightarrow{AC}$+$\overrightarrow{BC}$|=2$\sqrt{6}$,則△ABC面積的最大值為4.

查看答案和解析>>

同步練習(xí)冊(cè)答案