A. | (-$\frac{9}{4}$,-2]∪(0,$\frac{1}{2}$] | B. | (-$\frac{11}{4}$,-2]∪(0,$\frac{1}{2}$] | C. | (-$\frac{9}{4}$,-2]∪(0,$\frac{2}{3}$] | D. | (-$\frac{11}{4}$,-2]∪(0,$\frac{2}{3}$] |
分析 由g(x)=f(x)-mx=0,即f(x)=mx,作出兩個(gè)函數(shù)的圖象,利用數(shù)形結(jié)合即可得到結(jié)論.
解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{x}-3,x∈(0,1]}\\{{2}^{x-1}-1,x∈(1,2]}\end{array}\right.$的圖象如圖所示.
m∈(0,$\frac{1}{2}$]時(shí),y=mx與圖象兩支有兩個(gè)交點(diǎn),
m<0時(shí),由0<x≤1,$\frac{1}{x}$-3=mx,即mx2+3x-1=0,
方程有兩解時(shí),$\left\{\begin{array}{l}{9+4m>0}\\{0<-\frac{3}{2m}≤1}\\{m+2≤0}\end{array}\right.$,∴-$\frac{9}{4}$<m≤-2,
綜上所述,(-$\frac{9}{4}$,-2]∪(0,$\frac{1}{2}$].
故選:A.
點(diǎn)評(píng) 本題主要考查函數(shù)零點(diǎn)的應(yīng)用,利用數(shù)形結(jié)合是解決此類問題的基本方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 2$\sqrt{6}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{1}{4}$,$\frac{1}{2}}$) | B. | ($\frac{1}{4}$,$\frac{1}{2}$) | C. | [$\frac{1}{2}$,1) | D. | ($\frac{1}{2}$,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com