在△ABC中,內(nèi)角A,B,C對邊的邊長分別是a,b,c,已知c=
7
,C=
π
3

(1)若2sinA=3sinB,求a,b;
(2)若cosB=
3
10
10
,求sin2A的值.
考點:余弦定理,正弦定理
專題:三角函數(shù)的求值
分析:(1)利用余弦定理列出關(guān)系式,將c與cosC的值代入得到一個關(guān)系式,再將已知等式利用正弦定理化簡得到另一個關(guān)系式,聯(lián)立兩關(guān)系式即可求出a與b的值;
(2)由cosB的值,利用同角三角函數(shù)間的基本關(guān)系求出sinB的值,進(jìn)而確定出sin2B與cos2B的值,將sin2A變形為sin2(π-B-C),把C度數(shù)代入,利用兩角和與出的正弦函數(shù)公式化簡,把各自的值代入計算即可求出值.
解答: 解:(1)∵c=
7
,C=
π
3
,
∴由余弦定理得:c2=a2+b2-2abcosC,即a2+b2-ab=7①,
∵2sinA=3sinB,由正弦定理化簡得:2a=3b②,
∴聯(lián)立①②解得:a=3,b=2;
(2)∵cosB=
3
10
10
,B為三角形內(nèi)角,
∴sinB=
1-cos2B
=
10
10

∴sin2B=2sinBcosB=
3
5
,cos2B=2cos2B-1=
4
5
,
∴sin2A=sin2(π-B-C)=sin(
3
-2B)=-
3
2
cos2B+
1
2
sin2B=
3-4
3
10
點評:此題考查了正弦、余弦定理,同角三角函數(shù)間的基本關(guān)系,以及兩角和與差的正弦函數(shù)公式,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
=(sin
π
3
x,
3
),
b
=(1,cos
π
3
x),定義函數(shù)f(x)=
a
b

(Ⅰ)求函數(shù)f(x)的值域;
(Ⅱ)若函數(shù)f(x)圖象上的兩點M、N的橫坐標(biāo)分別為和3,O為坐標(biāo)原點,求△MON的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2px(p>0)的焦點為F,若過點F且斜率為1的直線與拋物線相交于M,N兩點,且|MN|=8.
(1)求拋物線C的方程;
(2)設(shè)直線l為拋物線C的切線,且l∥MN,P為l上一點,求
PM
PN
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從一組共7名學(xué)生中選男生2人,女生2人參加三種不同的活動,要求每人參加一種且每種活動都有人參加的選法有648種,問該組學(xué)生中男女生各有多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

據(jù)民生所望,相關(guān)部門對所屬單位進(jìn)行整治性核查,標(biāo)準(zhǔn)如下表:
查驗類別
所含指標(biāo)項42
每項初查合格率 
2
3
 
1
2
每項復(fù)查合格率 
1
2
 
1
2
每項核查合格權(quán)重分?jǐn)?shù) 2 1
每項核查不合格權(quán)重分?jǐn)?shù) 0 0
規(guī)定初查累計權(quán)重分?jǐn)?shù)為10分或9分的不需要復(fù)查并給予獎勵,10分的獎勵18萬元;9分的獎勵8萬元;初查累計權(quán)重分?jǐn)?shù)為7分及其以下的停下運(yùn)營并罰款1萬元;初查累計權(quán)重分?jǐn)?shù)為8分的要對不合格指標(biāo)進(jìn)行復(fù)查,最終累計權(quán)重得分等于初查合格部分與復(fù)查部分得分的和,最終累計權(quán)重分?jǐn)?shù)為10分方可繼續(xù)運(yùn)營,否則停業(yè)運(yùn)營并罰款1萬元.
(1)求一家單位既沒獲獎勵又沒被罰款的概率;
(2)求一家單位在這次整治性核查中所獲金額X(萬元)的分布列和數(shù)學(xué)期望(獎勵為正數(shù),罰款為負(fù)數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},滿足a1=4,an+1=5nan,求數(shù)列{an}通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知島A南偏東30°方向,距島A 20海里的B處有一緝私艇,一艘走私艇正從A處以30海里/小時的航速沿正東方向勻速行駛.假使緝私艇沿直線方向以v海里/小時的航速勻速行駛,經(jīng)過t小時截住該走私船.
(1)為保證緝私艇在30分鐘(含30分鐘)內(nèi)截住該走私船,試確定緝私艇航行速度的最小值;
(2)是否存在v,使得緝私艇以v海里/小時的航速行駛,總能有兩種不同的航行方向截住該走私艇,若存在,試確定v的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

i是虛數(shù)單位,計算
1+2i
2-i
等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

按如圖表示的算法,若輸入一個小于10的正整數(shù)n,則輸出n的值是
 

查看答案和解析>>

同步練習(xí)冊答案