13.已知數(shù)列{an}的前n項(xiàng)和為Sn,并且Sn+1=$\frac{1}{2}$Sn+a對(duì)任意的正整數(shù)n都成立,其中a1=2,a2=1.
(1)求a的值;
(2)求Sn

分析 (1)Sn+1=$\frac{1}{2}$Sn+a對(duì)任意的正整數(shù)n都成立,其中a1=2,a2=1.當(dāng)n=1時(shí),S2=$\frac{1}{2}{S}_{1}$+a,解得a即可.
(2)由Sn+1=$\frac{1}{2}$Sn+2,變形Sn+1-4=$\frac{1}{2}({S}_{n}-4)$,利用等比數(shù)列的通項(xiàng)公式即可得出.

解答 解:(1)Sn+1=$\frac{1}{2}$Sn+a對(duì)任意的正整數(shù)n都成立,其中a1=2,a2=1.
∴當(dāng)n=1時(shí),S2=$\frac{1}{2}{S}_{1}$+a,∴1+2=$\frac{1}{2}×2$+a,解得a=2.
(2)由Sn+1=$\frac{1}{2}$Sn+2,變形Sn+1-4=$\frac{1}{2}({S}_{n}-4)$,
∴數(shù)列{Sn-4}是等比數(shù)列,首項(xiàng)為-2,公比為$\frac{1}{2}$.
∴Sn-4=$-2×(\frac{1}{2})^{n-1}$,
∴Sn=4-$\frac{1}{{2}^{n-2}}$.

點(diǎn)評(píng) 本題考查了遞推關(guān)系的應(yīng)用、等比數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\stackrel{-1}{x}}&{\stackrel{x≤-1}{-1<x<-1}}\\{1}&{x≥1}\end{array}\right.$,函數(shù)g(x)=ax2+$\frac{1}{4}$.若函數(shù)y=f(x)-g(x)恰有2個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(0,+∞)B.(-∞,0)∪(2,+∞)C.(-∞,-$\frac{1}{2}$)∪(1,+∞)D.(-∞,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=ax3+bx-3,若f(-2)=10,求f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.試用兩種方法證明:三點(diǎn)A(-2,12),B(1,3),C(4,-6)在同一條直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.求極限$\underset{lim}{n→∞}$$\sqrt{n}$($\sqrt{n+1}$-$\sqrt{n-1}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下列函數(shù)中,在區(qū)間(0,+∞)上是減函數(shù)的是( 。
A.y=2xB.y=3-2xC.y=|x|D.y=lgx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知全集U={x∈N|1≤x≤9},集合A={1,2,4,6}集合B={2,3,5,6},試證明
(1)(∁uA)∪(∁uB)=∁u(A∩B)
(2)(∁uA)∩(∁uB)=∁u(A∪B)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)f(x)=cos(ωx+φ)的部分圖象如圖所示,則f(x)的單調(diào)遞減區(qū)間為[2k-$\frac{1}{4}$,2k+$\frac{3}{4}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)a1,b1,c1,a2,b2,c2均為非零實(shí)數(shù),又設(shè)不等式a1x2+b1x+c1>0和不等式a2x2+b2x+c2>0的解集分別為M和N,如果$\frac{{a}_{1}}{{a}_{2}}$=$\frac{_{1}}{_{2}}$=$\frac{{c}_{1}}{{c}_{2}}$,則( 。
A.M=NB.M?N
C.M⊆ND.以上答案均不正確

查看答案和解析>>

同步練習(xí)冊(cè)答案