分析 利用兩角差的正弦公式,把函數(shù)化為一個角的一個三角函數(shù)的形式,由正弦函數(shù)的性質(zhì)可得結(jié)論.
解答 解:函數(shù)y=3sinx+4cosx=5($\frac{3}{5}$sinx+$\frac{4}{5}$cosx)=5sin(x+θ),其中tanθ=$\frac{4}{3}$.$\frac{π}{4}$<θ<$\frac{π}{3}$,
則∵0≤x≤$\frac{π}{2}$,
∴x+θ∈[$\frac{π}{4}$,$\frac{5π}{6}$],
則當(dāng)x+θ=$\frac{π}{2}$時,函數(shù)取得最大值為5,此時x=$\frac{π}{2}$-θ,所以tanx=tan($\frac{π}{2}$-θ)=cotθ=$\frac{1}{tanθ}$=$\frac{3}{4}$,
當(dāng)x+θ=$\frac{5π}{6}$時,函數(shù)取得最小值為$\frac{5}{2}$,
故函數(shù)的值域為[$\frac{5}{2}$,5],
當(dāng)x+θ=$\frac{π}{2}$時,函數(shù)取得最大值為5,此時x=$\frac{π}{2}$-θ,所以tanx=tan($\frac{π}{2}$-θ)=cotθ=$\frac{1}{tanθ}$=$\frac{3}{4}$,
故答案為:[$\frac{5}{2}$,5];$\frac{3}{4}$.
點評 本題考查兩角差的正弦公式的應(yīng)用,以及正弦函數(shù)的最值,利用輔助角公式化簡函數(shù)的解析式,是解題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | M=P | B. | M?P | ||
C. | P?M | D. | M與P沒有公共元素 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com