8.已知函數(shù)y=f(x-1)是奇函數(shù),且f(2)=1,則f(-4)=( 。
A.1B.3C.-1D.-3

分析 先推得函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(-1,0)中心對(duì)稱(chēng),由此得出恒等式:f(x)+f(-2-x)=0,再令x=2代入即可解出f(-4).

解答 解:因?yàn)楹瘮?shù)y=f(x-1)是奇函數(shù),
所以y=f(x-1)的圖象點(diǎn)(0,0)中心對(duì)稱(chēng),
而f(x-1)的圖象向左平移一個(gè)單位,即得f(x)的圖象,
所以,y=f(x)的圖象關(guān)于點(diǎn)(-1,0)中心對(duì)稱(chēng),
因此,對(duì)任意的實(shí)數(shù)x都有,f(x)+f(-2-x)=0,
令x=2代入上式得,f(2)+f(-4)=0,
由于f(2)=1,所以,f(-4)=-1,
故答案為:C.

點(diǎn)評(píng) 本題主要考查了抽象函數(shù)的圖象和性質(zhì),涉及奇偶性的應(yīng)用,函數(shù)圖象對(duì)稱(chēng)中心的性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)集合A={x|y=$\sqrt{1-{x}^{2}}$},B={y|y=$\sqrt{1-{x}^{2}}$},則A∩B=( 。
A.{(-1,1)}B.{(0,1)}C.[-1,1]D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若a=$\sqrt{3}$,且a2=b2+c2-bc,則△ABC的面積S的最大值為(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{3\sqrt{3}}{4}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.函數(shù)f(x)=sin(x+$\frac{π}{4}$)圖象的一條對(duì)稱(chēng)軸方程為( 。
A.x=-$\frac{π}{4}$B.x=$\frac{π}{4}$C.x=$\frac{π}{2}$D.x=π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)向量$\overrightarrow{a}$=(3cosx,1),$\overrightarrow$=(5sinx+1,cosx),且$\overrightarrow{a}$∥$\overrightarrow$,則cos2x=$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.某變速運(yùn)動(dòng)的物體,路程s(米)隨時(shí)間t(秒)變化的函數(shù)關(guān)系式是s=t2-2t+5,則此物體在t=1秒時(shí)的瞬時(shí)速度為( 。
A.2m/sB.0m/sC.4m/sD.-4m/s

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若對(duì)于任意的正整數(shù)n都有an是Sn與n的等差中項(xiàng).
(1)求證:數(shù)列{an+1}是等比數(shù)列,并求{an}的通項(xiàng)公式;
(2)求數(shù)列{nan}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知數(shù)列{an}滿(mǎn)足a1=1,a2=2,an=$\frac{{{a_{n-1}}}}{{{a_{n-2}}}}$(n≥3,且n∈N*),則a2015=( 。
A.$\frac{1}{2}$B.1C.2D.2-2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知定義在R上的偶函數(shù)f(x),當(dāng)x∈(-∞,0]時(shí)的解析式為f(x)=x2+2x
(1)求函數(shù)f(x)在R上的解析式;
(2)畫(huà)出函數(shù)f(x)的圖象并直接寫(xiě)出它的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案