16.函數(shù)f(x)=sin(x+$\frac{π}{4}$)圖象的一條對(duì)稱(chēng)軸方程為(  )
A.x=-$\frac{π}{4}$B.x=$\frac{π}{4}$C.x=$\frac{π}{2}$D.x=π

分析 由條件利用余弦函數(shù)的圖象的對(duì)稱(chēng)性,求得f(x)的圖象的一條對(duì)稱(chēng)軸方程.

解答 解:對(duì)于函數(shù)f(x)=sin(x+$\frac{π}{4}$),令x+$\frac{π}{4}$=kπ+$\frac{π}{2}$,求得 x=kπ+$\frac{π}{4}$,k∈Z,
可得它的圖象的一條對(duì)稱(chēng)軸為 x=$\frac{π}{4}$,
故選:B.

點(diǎn)評(píng) 本題主要考查余弦函數(shù)的圖象的對(duì)稱(chēng)性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖,在正四棱柱ABCD-A1B1C1D1中,E,F(xiàn)分別是AB1,BC1的中點(diǎn),則以下結(jié)論中不成立的是( 。
A.EF與BB1垂直B.EF與BD垂直C.EF與CD異面D.EF與A1C1異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)f(x)=x2-1(2<x<3)的反函數(shù)為( 。
A.f-1(x)=$\sqrt{x-1}$(3<x<8)B.f-1(x)=$\sqrt{x+1}$(3<x<8)C.f-1(x)=$\sqrt{x-1}$(4<x<9)D.f-1(x)=$\sqrt{x+1}$(4<x<9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知正數(shù)x,y滿足2x+y=1,則4x2+y2+$\frac{1}{xy}$的最小值為$\frac{17}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知冪函數(shù)f(x)的圖象過(guò)點(diǎn)(4,$\frac{1}{2}$),則f(8)的值為( 。
A.$\frac{\sqrt{2}}{4}$B.64C.2$\sqrt{2}$D.$\frac{1}{64}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列命題正確的是( 。
A.“b2=ac”是“a,b,c成等比數(shù)列”的充要條件
B.“?x∈R,x2>0”的否定是“?x0∈R,x02>0”
C.“若a=-4,則函數(shù)f(x)=ax2+4x-1只有唯一一個(gè)零點(diǎn)”的逆命題為真命題
D.“函數(shù)f(x)=lnx2與函數(shù)g(x)=$\left\{\begin{array}{l}{2lnx,x>0}\\{2ln(-x),x<0}\end{array}\right.$的圖象相同”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)y=f(x-1)是奇函數(shù),且f(2)=1,則f(-4)=(  )
A.1B.3C.-1D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.(1)在平面直角坐標(biāo)系xOy中,設(shè)直線y=$\sqrt{3}$x+2m和圓x2+y2=n2相切,其中m,n∈N*,且0<|m-n|≤1,若函數(shù)f(x)=mx+1-n的零點(diǎn)x0∈(k-2,k-1),k∈Z,求整數(shù)k的值.
(2)設(shè)a,b∈R且不為零,若直線ax+by-1=0與x軸相交于點(diǎn)A,與y軸相交于B,且l與圓x2+y2=k2相交所得弦的長(zhǎng)為2,O為坐標(biāo)原點(diǎn),求△AOB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)f(x)是定義在R上的奇函數(shù),并且當(dāng)x∈(0,+∞)時(shí),f(x)=lgx2,那么,f(-10)=( 。
A.-1B.-2C.2D.10

查看答案和解析>>

同步練習(xí)冊(cè)答案