18.若實(shí)數(shù)x,y滿足不等式組:$\left\{{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{3x-y-3≤0}\end{array}}\right.$,則該約束條件所圍成的平面區(qū)域的面積是( 。
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.3

分析 作出不等式組對應(yīng)的平面區(qū)域,根據(jù)平面區(qū)域即可求出面積.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
則對應(yīng)的平面區(qū)域?yàn)椤鰽BC.
其中A(2,3),C(1,0),B(0,1),
則△ABC的面積S=S梯形OBAD-S△OBC-S△ACD=$\frac{(1+3)×2}{2}$-$\frac{1}{2}×1×1$$-\frac{1}{2}×1×3$=4-$\frac{1}{2}-\frac{3}{2}$=2,
故選:B.

點(diǎn)評 本題主要考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結(jié)合作出對應(yīng)的圖象是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x2-alnx(a∈R).
(1)當(dāng)a=-1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)如果方程f(x)=0總有兩個(gè)不相等的實(shí)數(shù)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.不等式x2(x+1)≤0的解集為{x|x=0或x≤-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)命題p:?x0∈R,${x_0}^2+2m{x_0}+2+m=0$,
命題q:方程$\frac{{x}^{2}}{1-2m}$+$\frac{{y}^{2}}{m+2}$=1表示雙曲線
(1)若命題p為真命題,求實(shí)數(shù)m的取值范圍;
(2)若命題q為真命題,求實(shí)數(shù)m的取值范圍;
(3)求使“p∨q”為假命題的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知cosθ=$\frac{7}{25}$(0<θ<$\frac{π}{2}$)
(1)求tanθ的值;                          
(2)求$\frac{{2{{cos}^2}\frac{θ}{2}-sinθ}}{{\sqrt{2}sin({θ+\frac{π}{4}})}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)實(shí)數(shù)x,y滿足|x-1|+|y-1|≤1,A(1,0),P(x,y),則$\overrightarrow{OA}•\overrightarrow{OP}$的取值范圍是[0,2](用區(qū)間表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若正實(shí)數(shù)x,y滿足10x+2y+60=xy,則xy的最小值是180.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)向量$\overrightarrow a$,$\overrightarrow b$滿足|${\overrightarrow a$-$\overrightarrow b}$|=2$\sqrt{3}$,|${\overrightarrow a$+$\overrightarrow b}$|=2,則$\overrightarrow a$•$\overrightarrow b$=( 。
A.$2\sqrt{3}$B.$-2\sqrt{3}$C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在一個(gè)文藝比賽中,12名專業(yè)人士和12名觀眾代表各組成一個(gè)評判小組,給參賽選手打分,如圖是兩個(gè)評判組對同一選手打分的莖葉圖:

(1)求A組數(shù)的眾數(shù)和B組數(shù)的中位數(shù);
(2)對每一組計(jì)算用于衡量相似性的數(shù)值,回答:小組A與小組B哪一個(gè)更像是由專業(yè)人士組成的?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案