13.某袋中有編號為1,2,3,4,5,6的6個小球(小球除編號外完全相同),甲先從袋中摸出一個球,記下編號后放回,乙再從袋中摸出一個球,記下編號,則甲、乙兩人所摸出球的編號不同的概率是( 。
A.$\frac{1}{5}$B.$\frac{1}{6}$C.$\frac{5}{6}$D.$\frac{35}{36}$

分析 根據(jù)(甲,乙)方法得出總共的結(jié)果,及符合題意的個數(shù),求解即可.

解答 解:甲先從袋中摸出一個球,有6種可能的結(jié)果,
乙再從袋中摸出一個球,有6種可能的結(jié)果
如果按(甲,乙)方法得出總共的結(jié)果為:36個
甲、乙兩人所摸出球的編號不同的結(jié)果為30個
∴甲、乙兩人所摸出球的編號不同的概率是$\frac{30}{36}$=$\frac{5}{6}$,
故選:C

點評 本題考查了古典概率的求解,根據(jù)題意得出總事件的個數(shù),符合題意的個數(shù),求解即可,難度不大,屬于容易題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在三角形ABC中,已知AB=4,AC=3,BC=6,P為BC中點,則三角形ABP的周長為7+$\frac{\sqrt{14}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.甲、乙兩人為了響應(yīng)政府“節(jié)能減排”的號召,決定各購置一輛純電動汽車.經(jīng)了解目前市場上銷售的主流純電動汽車,按續(xù)駛里程數(shù)R(單位:公里)可分為三類車型,A:80≤R<150,B:150≤R<250,C:R≥250.甲從A,B,C三類車型中挑選,乙從B,C兩類車型中挑選,甲、乙二人選擇各類車型的概率如下表:
車型
概率
ABC
$\frac{1}{5}$pq
 乙/$\frac{1}{4}$ $\frac{3}{4}$ 
若甲、乙都選C類車型的概率為$\frac{3}{10}$.
(Ⅰ)求p,q的值;
(Ⅱ)求甲、乙選擇不同車型的概率;
(Ⅲ)某市對購買純電動汽車進行補貼,補貼標準如下表:
車型ABC
補貼金額(萬元/輛)345
記甲、乙兩人購車所獲得的財政補貼和為X,求X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.執(zhí)行如圖所示的程序框圖,輸出的S值為( 。
A.9B.16C.25D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)$f(x)=2\sqrt{3}{cos^2}ωx+sin2ωx-\sqrt{3}$(其中ω>0),且f(x)的最小正周期為2π.
(Ⅰ)求ω的值;
(Ⅱ)將函數(shù)y=f(x)圖象上各點的橫坐標縮短為原來的$\frac{1}{2}$,縱坐標不變,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夾角為45°的兩個單位向量,則|$\sqrt{2}$$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$|=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)A(2,1),A∈l,直線l與⊙O:x2+y2=9交于B,C兩點,則$\overrightarrow{OB}$•$\overrightarrow{OC}$的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,其四個頂點組成的菱形的面積是4$\sqrt{2}$,O為坐標原點,若點A在直線x=2上,點B在橢圓C上,且OA⊥OB.
(Ⅰ) 求橢圓C的方程;
(Ⅱ)求線段AB長度的最小值;
(Ⅲ)試判斷直線AB與圓x2+y2=2的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.計算:(1)lg2+lg5=1;
(2)log36-log32=1;
(3)log525=2;
(4)3log82=1;
(5)$\frac{1}{2}$lg4+lg5=1;
(6)log575-2log5$\sqrt{3}$=2;
(7)log5$\sqrt{3}$•2log3$\sqrt{5}$=$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案