11.某市近10年的國內(nèi)生產(chǎn)總值從1000億元開始以8%的速度增長,則這個城市近10年的國內(nèi)生產(chǎn)總值一共是(  )
A.12500(1.089-1)億元B.12500(1.0810-1)億元
C.12500(1-0.929)億元D.12500(1-0.9210)億元

分析 由題意每年的生產(chǎn)總值構(gòu)成一個以首項a1=1000,公比為q=1+8%=1.08的等比數(shù)列,由此利用等比數(shù)列的求和公式能求出這個城市近10年的國內(nèi)生產(chǎn)總值.

解答 解:∵某市近10年的國內(nèi)生產(chǎn)總值從1000億元開始以8%的速度增長,
∴每年的生產(chǎn)總值構(gòu)成一個以首項a1=1000,公比為q=1+8%=1.08的等比數(shù)列,
∴這個城市近10年的國內(nèi)生產(chǎn)總值一共是:
S10=$\frac{1000(1-1.0{8}^{10})}{1-1.08}$=12500(1.0810-1)(億元).
故選:B.

點評 本題考查這個城市近10年的國內(nèi)生產(chǎn)總值的求法,是中檔題,解題時要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知A、B為橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1與雙曲線$\frac{{x}^{2}}{4}$$-\frac{{y}^{2}}{3}$=1的公共頂點M、N分別為橢圓和雙曲線上一點(異于點A、B),$\overrightarrow{AM}$$+\overrightarrow{BM}$=λ($\overrightarrow{AN}$$+\overrightarrow{BN}$)(λ∈R),設(shè)直線AM、BM、AN、BN的斜率分別為k1、k2、k3、k4,則k1+k2+k3+k4=( 。
A.-$\frac{3}{2}$B.0C.$\frac{3}{2}$D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知復(fù)數(shù)z1=a+2i,z2=-2+i,且|z1|=|z2|,則實數(shù)a等于(  )
A.1B.-1C.1或-1D.±1或0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知tan$\frac{θ}{2}$=2,則$\frac{2sinθ+cosθ}{sinθ-2cosθ}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知拋物線C:y2=2px(p>0)的焦點為F,點A,B在C上,且點F是△AOB的重心,則cos∠AFB為( 。
A.-$\frac{3}{5}$B.-$\frac{7}{8}$C.-$\frac{11}{12}$D.-$\frac{23}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}中,an=(-1)n•($\frac{1}{n}$+$\frac{1}{n+1}$),n∈N*,求數(shù)列{an}前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,在正方形OABC內(nèi).陰影部分是由兩曲線y=$\sqrt{x}$,y=x2(0≤x≤1),在正方形內(nèi)隨機取一點,則此點取自陰影部分的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知$\overrightarrow{a}$=(1,m)與$\overrightarrow$=(n,-4)共線,且$\overrightarrow{c}$=(2,3)與$\overrightarrow$垂直,則m+n=$\frac{16}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.雙曲線x2-$\frac{{y}^{2}}{4}$=1的漸近線方程為( 。
A.y=±4xB.y=±2xC.y=±$\frac{1}{2}x$D.y=±$\frac{1}{4}$x

查看答案和解析>>

同步練習(xí)冊答案