3.$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$能構(gòu)成空間的-個基底的條件是(  )
A.O,A,B,C四點任意三點不共線B.O,A,B,C四點不共面
C.A,B,C三點共線D.存在實數(shù)x,y,z,使x $\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$=$\overrightarrow{0}$

分析 根據(jù)空間向量是基本定理,當向量$\overrightarrow{OA}$、$\overrightarrow{OB}$、$\overrightarrow{OC}$不共面時,能組成空間的一組基底,由此判斷即可.

解答 解:對于A,“O,A,B,C”四點中任意三點不共線時,如平面四邊形OABC,此時$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$共面,
不能構(gòu)成空間的-個基底;
對于B,“O,A,B,C”四點不共面時,$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$不共面,能構(gòu)成空間的-個基底;
對于C,“A,B,C”三點共線時,$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$共面,不能構(gòu)成空間的-個基底;
對于D,存在實數(shù)x,y,z,使x $\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$=$\overrightarrow{0}$時,$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$共面,不能構(gòu)成空間的-個基底.
故選:B.

點評 本題考查了空間向量基本定理的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

13.若不等式2xlnx≥-x2+ax-3對x∈(0,+∞)恒成立,則實數(shù)a的取值范圍是(-∞,4].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.定義在R上的函數(shù)f(x)滿足f(x+6)=f(x).當-3≤x<-1時,f(x)=-(x+2)2;當-1≤x<3時,f(x)=x.則f(1)+f(2)+f(3)+…+f(2016)=( 。
A.335B.336C.338D.2 016

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設a>1,b>1且ab-(a+b)=1,那么( 。
A.ab有最大值$2\sqrt{2}+1$B.ab有最小值${(\sqrt{2}+2)^2}$C.ab有最小值${(\sqrt{2}+1)^2}$D.ab有最大值$2(\sqrt{2}+1)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)y=f(x)在R上為偶函數(shù)且在[0,+∞)上單調(diào)遞增.若f(t)>f(2-t),則實數(shù)t的取值范圍是( 。
A.(-∞,1)B.(1,+∞)C.$(\frac{2}{3},2)$D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.△ABC的頂點B,C的坐標分別為(0,0),(4,0),AB邊上的中線的長為3,求頂點A的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.命題“?x∈[-1,2],x2-2x-a≤0”為真命題,則實數(shù)a的取值范圍是( 。
A.a≥3B.a≤3C.a≥0D.a≤0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知tanα=$\frac{2}{5}$,則$\frac{cosα-3sinα}{2cosα+sinα}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設點P(x,y)為圓x2+y2=1上任-點.求下列兩個式子的取值范圍.
(1)$\frac{y-2}{x+1}$;
(2)x2+y2-2x+6y+1.

查看答案和解析>>

同步練習冊答案