分析 由已知結合三棱錐和正三棱柱的幾何特征,可得此三棱錐外接球,即為以△ABC為底面以SA為高的正三棱柱的外接球,分別求出棱錐底面半徑r,和球心距d,得球的半徑R,然后求解體積.
解答 解:根據(jù)已知中側棱SA⊥平面ABC,底面ABC是邊長為$\sqrt{3}$的正三角形,SA=2$\sqrt{3}$,
可得此三棱錐外接球,即為以△ABC為底面以SA為高的正三棱柱的外接球,
∵△ABC是邊長為$\sqrt{3}$的正三角形,
∴△ABC的外接圓半徑r=$\frac{\sqrt{3}}{3}$×$\sqrt{3}$=1,球心到△ABC的外接圓圓心的距離d=$\frac{1}{2}$SA=$\sqrt{3}$,
故球的半徑R=$\sqrt{1+3}$=2.
三棱錐S-ABC外接球的體積為:$\frac{4}{3}$π×23=$\frac{32}{3}$π.
故答案為:$\frac{32}{3}$π.
點評 本題考查的知識點是球內接多面體,熟練掌握球的半徑R公式是解答的關鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{6}$ | B. | $\sqrt{2}$+1 | C. | $\sqrt{2}$+2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | -$\frac{3}{2}$ | C. | -$\frac{2}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com