分析 (1)根據(jù)線面平行的性質(zhì)定理即可證明MN∥BC;
(2)取AE=$\frac{1}{3}$AD,根據(jù)線面垂直的性質(zhì)定理證明AC⊥BM.
解答 證明:(1)∵BC∥AD,BC?平面PAD,AD?平面PAD,
∴BC∥平面PAD,
∵平面PAD∩平面BCMN=MN,
∴BC∥MN,即MN∥BC;
(2)取AE=$\frac{1}{3}$AD,則ME∥PA,AE=AB.
∵PA⊥底面ABCD,
∴ME⊥底面ABCD,∴ME⊥AC,
∵BC∥AD,AB⊥AD,
∴ABCE是正方形,
∴AC⊥BE,
∵ME∩BE=E,
∴AC⊥平面MBE,
∵BM?平面MBE,
∴AC⊥BM.
點評 本題主要考查線面垂直和線面平行的判定和性質(zhì),綜合考查空間直線和平面的位置關系的判定,要求熟練掌握相應的判定定理和性質(zhì)定理,考查學生的運算和推理能力.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
加油類型 汽車排量 | 小排量 | 大排量 |
92號 | 160 | 96 |
95號 | 20 | 24 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com