分析 由題意可得x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{π}{6}$],由余弦函數(shù)可得最值.
解答 解:∵x∈[0,$\frac{π}{2}$],∴x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{π}{6}$],
∴當(dāng)x-$\frac{π}{3}$=-$\frac{π}{3}$即x=0時,函數(shù)取最小值$\frac{1}{2}$,
當(dāng)x-$\frac{π}{3}$=0即x=$\frac{π}{3}$時,函數(shù)取最大值1,
故函數(shù)的值域為[$\frac{1}{2}$,1]
故答案為:[$\frac{1}{2}$,1]
點評 本題考查三角函數(shù)的最值,屬基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\sqrt{2}$ | B. | $\frac{1}{2}$ | C. | $\sqrt{2}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,都有$x_{\;}^2+2x+5≠0$ | B. | ?x∈R,都有$x_{\;}^2+2x+5=0$ | ||
C. | ?x0∈R,都有$x_0^2+2{x_0}+5≠0$ | D. | ?x∉R,都有$x_{\;}^2+2x+5≠0$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com