設x,y滿足
x-y≥a
x+y≤1
,且z=ax-2y的最小值是1,則實數(shù)a=( 。
A、-4B、1
C、-4或1D、-1或4
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,利用數(shù)形結合即可得到結論.
解答: 解:不等式則對應的平面區(qū)域為角形區(qū)域,
x-y=a
x+y=1
,解得
x=
a+1
2
y=
1-a
2
,
故最小值應該在點(
a+1
2
,
1-a
2
)處取得,
則a•
a+1
2
-2•
1-a
2
=1,
解得a=-4,或a=1,
當a=1時,不等式組為
x-y≥1
x+y≤1
,此時目標函數(shù)為z=x-2y,即y=
1
2
x-
z
2
,
此時直線經(jīng)過A(1,0),滿足條件z=1,
當a=-4時,則不滿足條件,
故選:B.
點評:本題主要考查線性規(guī)劃的應用,利用數(shù)形結合是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

橢圓C:
x2
a
+
y2
b2
=1(a>b>0)的兩個焦點為F1,F(xiàn)2,點P在橢圓C上,且PF1⊥PF2,|PF1|=
4
3
,|PF2|=
14
3

 (1)求橢圓的方程    
(2)若直線L過圓 x2+y2+4x-2y=0的圓心M,交橢圓C于A,B兩點,且A,B關于點M對稱,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設命題p:存在x∈R,使得a≥2sinx+1;命題q:任意x∈(0,+∞),不等式a≤
1
x
+x恒成立,
(1)寫出“非p”命題,并判斷“非p”是q成立的什么條件(充分不必要條件、必要不充分條件、充要條件、既不充分又不必要條件);
(2)若“p或q”為真“p且q”為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式an=
1
n2
,證明{an}的前n項和小于
7
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A、B兩島相距100km,B在A的北偏東30°,甲船自A以40km/h的速度向B航行,同時乙船自B以30km/h的速度沿方位角150°(即東偏南60°)方向航行,當兩船之間的距離最小時,兩船合計航行距離(  )
A、等于
65
7
km
B、小于100km
C、大于100km
D、等于100km

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是遞增的等差數(shù)列,a1,a2是方程x2-3x+2=0的兩根.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{
1
anan+1
}
的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=Asin(2x+φ)+k(-π<φ<0),它的圖象的一條對稱軸是x=
π
8

(1)若A=1,求f(x)的單調增區(qū)間;
(2)若f(x)的最大值為3,最小值為-1,求A與k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)集合A={a+b
2
|a,b∈Q},B={a+b
3
|a,b∈Q}對于實數(shù)集合M⊕N={x+y|x∈M,y∈N},M?N={xy|x∈M,y∈N}.
(1)舉出一個數(shù)m,使得m∈A?B,且m∉A⊕B;
(2)求證:A?A=A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在2014年11月4日宜賓市舉辦的四川省第十四屆少數(shù)民族傳統(tǒng)體育運動會的餐飲點上,某種茶飲料一天的銷售量與該天的日平均氣溫(單位:℃)有關,若日平均氣溫不超過15℃,則日銷售量為100瓶;若日平均氣溫超過15℃但不超過20℃,則日銷售量為150 瓶;若日平均氣溫超過20℃,則日銷售量為200瓶.據(jù)宜賓市氣象部門預測,該地區(qū)在運動會期間每一天日平均氣溫不超過15℃,超過15℃但不超過20℃,超過20℃這三種情況發(fā)生的概率分別為P1,P2,P3,又知P1,P2為方程5x2-3x+a=0的兩根,且P2=P3
(Ⅰ)求P1,P2,P3的值;
(Ⅱ)記ξ表示該茶飲料在運動會期間任意兩天的銷售量總和(單位:瓶),求ξ的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案