14.i是虛數(shù)單位,計(jì)算$\frac{3i}{1-i}$=(  )
A.$-\frac{3}{2}+\frac{3}{2}i$B.$-\frac{3}{2}-\frac{3}{2}i$C.$-\frac{3}{2}+3i$D.$-\frac{3}{2}-3i$

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)$\frac{3i}{1-i}$,則答案可求.

解答 解:$\frac{3i}{1-i}=\frac{3i(1+i)}{(1-i)(1+i)}=\frac{-3+3i}{2}=-\frac{3}{2}+\frac{3}{2}i$,
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在公差不為零的等差數(shù)列{an}中,其前n項(xiàng)和為Sn,已知a3=5,且a1,a2,a5成等比數(shù)列.
(Ⅰ)求an和Sn
(Ⅱ)記${T_n}=\frac{1}{{{a_1}{a_2}}}+\frac{1}{{a{\;}_2{a_3}}}+…\frac{1}{{{a_n}{a_{n+1}}}}$,若${T_n}≥\frac{9}{{{S_{n+k}}}}$對(duì)任意正整數(shù)n恒成立,求正整數(shù)k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,BC⊥AC,BC=AC=2,AA1=3,D為AC的中點(diǎn)
(Ⅰ)求證:AB1∥平面BDC1;
(Ⅱ)求二面角C1-BD-C的余弦值;
(Ⅲ)在側(cè)棱AA1上是否存在點(diǎn)P,使得CP⊥平面BDC1?若存在,求出AP的長(zhǎng);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知數(shù)列{an}滿足a1=1,an+1-2an=2n
(1)證明:數(shù)列{$\frac{{a}_{n}}{{2}^{n}}$}是等差數(shù)列,并求出{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{(n+2){2}^{n-1}}{{a}_{n}{a}_{n+1}}$,{bn}的前n項(xiàng)和為Sn,求證:Sn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知集合M={x|-1≤x≤1},N={x|y=$\sqrt{x}$+ln(1-x)},則M∩N=( 。
A.[0,1)B.(0,1)C.[0,+∞)D.(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.如圖,在△ABC中,已知$∠BAC=\frac{π}{3}$,AB=2,AC=4,點(diǎn)D為邊BC上一點(diǎn),滿足$\overrightarrow{AC}$+2$\overrightarrow{AB}$=3$\overrightarrow{AD}$,點(diǎn)E是AD上一點(diǎn),滿足$\overrightarrow{AE}$=2$\overrightarrow{ED}$,則BE=$\frac{2\sqrt{21}}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知集合M={y|y=2x,x>0},N={x|y=lgx},則M∩N為(  )
A.(0,+∞)B.(1,+∞)C.[2,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)有關(guān)于x的一元二次方程x2+ax+b2=0.
(1)若a是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率;
(2)若a是從區(qū)間[0,3]任取的一個(gè)數(shù),b是從區(qū)間[0,2]任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知點(diǎn)A的坐標(biāo)為(2,-5),點(diǎn)B的坐標(biāo)為(-1,4),且$\overrightarrow{AC}$=2$\overrightarrow{BC}$,則點(diǎn)C的坐標(biāo)為(-4,13).

查看答案和解析>>

同步練習(xí)冊(cè)答案