1.若f(x)=${∫}_{0}^{x}$|sin2t|dt(0<x<2π),則函數(shù)f(x)的單調(diào)遞增區(qū)間為(  )
A.(0,π)B.(0,2π)C.(0,t)D.(0,2t)

分析 根據(jù)定積分的概念和函數(shù)的單調(diào)性即可求出.

解答 解:由于被積函數(shù)是非負(fù)函數(shù),所以函數(shù)f(x)為增函數(shù),故函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,2π),
故選:B.

點(diǎn)評(píng) 本題考查了的定積分的有關(guān)概念和函數(shù)的單調(diào)區(qū)間,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.定義域?yàn)镽的函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{|x-2|}(x≠2)}\\{1(x=2)}\end{array}\right.$,若關(guān)于x的方程f2(x)+bf(x)+c=0恰有5個(gè)不同的實(shí)數(shù)解x1,x2,x3,x4,x5,則f(x1+x2+x3+x4+x5)等于$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列五個(gè)命題中,
①點(diǎn)P(-1,4)到直線3x+4y=2的距離為3.
②過點(diǎn)M(-3,5)且在兩坐標(biāo)軸上的截距互為相反數(shù)的直線方程為x-y+8=0.
③在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是AB,AD的中點(diǎn),則異面直線B1C與EF所成的角的大小60°
④過點(diǎn)(-3,0)和點(diǎn)(-4,$\sqrt{3}$)的直線的傾斜角是120°
⑤直線x+2y+3=0與直線2x+4y+1=0的距離是$\frac{{\sqrt{5}}}{2}$.
其中正確的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在正方體ABCD-A′B′C′D′中,判斷下列命題是否正確,并說明理由:
(1)直線AC在平面ABCD內(nèi);
(2)設(shè)上下底面中心為O,O′,則平面AA′C′C與平面BB′D′D的交線為OO′.
(3)點(diǎn)A,O,C′可以確定一平面.
(4)平面AB′C′與平面AC′D重合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.計(jì)算矩陣的乘積$(\begin{array}{l}{3}&{-1}&{6}&{2}\\{-2}&{0}&{1}&{-4}\end{array})$$(\begin{array}{l}{1}&{3}&{-2}\\{0}&{1}&{-3}\\{3}&{0}&{5}\\{2}&{-1}&{4}\end{array})$=$[\begin{array}{l}{25}&{6}&{35}\\{-7}&{-2}&{-7}\end{array}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=1n(x+1)+a(x2-x),其中a∈R,當(dāng)a=1時(shí),求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.某個(gè)幾何體的三視圖如圖所示,則該幾何體的體積是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知f(x)為定義在[a-1,2a+1]上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=ex+1,則f(2x+1)>f($\frac{x}{2}$+1)的解得取值范圍是( 。
A.[-1,1]B.[-1,-$\frac{1}{3}$)C.[0,$\frac{8}{9}$]D.[-1,-$\frac{4}{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=log2(x2-(a+1)x+a)的定義域?yàn)镸,集合N={x∈R|x2≥2}.
(1)求集合M;
(2)若N⊆M,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案