7.從6名同學(xué)中選4人分別到A、B、C、D四個(gè)城市游覽,要求每個(gè)城市有一人游覽,每人只游覽一個(gè)城市,且這6人中甲、乙兩人不去D城市游覽,則不同的選擇方案共有(  )
A.96種B.144種C.240種D.300種

分析 本題是一個(gè)分步計(jì)數(shù)問題,先安排D城市的游覽方法,甲、乙兩人都不能參加D城市的游覽方法有4種選法,然后看其余三個(gè),可以在剩余的五人中任意選,根據(jù)分步計(jì)數(shù)原理得到結(jié)果.

解答 解:先安排D城市的游覽方法,有4種,再安排A城市的游覽方法,有5種,
再安排B城市的游覽方法,有4種,再安排C城市的游覽方法,有3種.
根據(jù)分步計(jì)數(shù)原理,不同的選擇方案有4×5×4×3=240種,
故選C.

點(diǎn)評 本題考查分步計(jì)數(shù)問題,解題時(shí)一定要分清做這件事需要分為幾步,每一步包含幾種方法,看清思路,把幾個(gè)步驟中數(shù)字相乘得到結(jié)果,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在數(shù)列{an}中,a1=1,an+1=1-$\frac{1}{4{a}_{n}}$,bn=$\frac{1}{2{a}_{n}-1}$,其中n∈N*
(1)求證:數(shù)列{bn}為等差數(shù)列;
(2)是否存在實(shí)數(shù)λ,使得數(shù)列{λan+$\frac{1}{_{n}}$}為等差數(shù)列?若存在,求出λ;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知曲線Γ:ρ=$\frac{{\frac{3}{2}}}{{1-\frac{1}{2}cosθ}}$,θ∈R與曲線C:$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}$,t∈R相交于A,B兩點(diǎn),又原點(diǎn)O(0,0),則|OA|•|OB|=$\frac{12}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.${(\frac{1}{x}-ax)^6}$展開式的常數(shù)項(xiàng)為-160,則a的值為( 。
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ax+b-lnx表示的曲線在點(diǎn)(2,f(2))處的切線方程x-2y-2ln2=0.
(Ⅰ)求a,b的值;
(Ⅱ)若f(x)≥kx-2對于x∈(0,+∞)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{2^x},({x≤0})}\\{{x^{\frac{1}{3}}},({x>0})}\end{array}}$,則f(f(-3))=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知對任意n∈N*,向量$\overrightarrow{d_n}=({{a_{n+1}}-\frac{1}{4}{a_n}\;,\;\frac{{a_{n+1}^2}}{a_n}})$都是直線y=x的方向向量,設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若a1=1,則$\lim_{n→∞}{S_n}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知全集為R:f(x)=$\frac{1}{\sqrt{lo{g}_{2}x-1}}$的定義域?yàn)榧螦.x2-2x-3≥0的解集為集合B,則A∩(∁RB)=( 。
A.(0,3)B.[2,3)C.(2,3)D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,角A,B,C為三個(gè)內(nèi)角,已知cosA=$\frac{5}{7}$,cosB=$\frac{1}{5}$,BC=5.
(Ⅰ)求AC的長;
(Ⅱ)設(shè)D為AB的中點(diǎn),求CD的長.

查看答案和解析>>

同步練習(xí)冊答案