12.若集合M={x∈Z|-1≤x≤1},P={y|y=x2,x∈M},則集合M與P的關系是( 。
A.M=PB.M?PC.P?MD.M∈P

分析 集合M={x∈Z|-1≤x≤1}={-1,0,1},P={y|y=x2,x∈M}={0,1},即可得出.

解答 解:集合M={x∈Z|-1≤x≤1}={-1,0,1},
P={y|y=x2,x∈M}={0,1},
則集合M與P的關系是P?M.
故選:C.

點評 本題考查了集合之間的關系,考查了計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知f(x)是R上的一個偶函數(shù),g(x)是R上的一個奇函數(shù),且滿足f(x)=g(x)+3x
(1)求函數(shù)f(x)的解析式;
(2)證明:函數(shù)f(x)在區(qū)間(0,+∞)上是增函數(shù);
(3)設h(x)=$\sqrt{f(x)-a}$,若函數(shù)h(x)在x∈[1,+∞)時都有意義,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知命題P:函數(shù)y=loga(1+2x)在定義域上單調(diào)遞減;命題Q:不等式(a-2)x2+2(a-2)x-4<0對任意實數(shù)x恒成立.若P∨Q是真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取20件,測量這些產(chǎn)品的一項質(zhì)量指標值,由測量得到如圖1的頻率分布直方圖,從左到右各組的頻數(shù)依次記為A1,A2,A3,A4,A5
(1)求圖中a的值并估算該企業(yè)產(chǎn)品質(zhì)量指標的平均值;
(2)如圖2是統(tǒng)計圖中各組頻數(shù)的一個算法流程圖,求輸出的結(jié)果S;
(3)從質(zhì)量指標值分布在[80,90),[110,120)的產(chǎn)品中隨機抽取2件產(chǎn)品,求所抽取兩件產(chǎn)品的質(zhì)量指標值之差大于10的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.橢圓$\frac{x^2}{4}+\frac{y^2}{2}=1$上有一點P,F(xiàn)1、F2是橢圓的左、右焦點,若△F1PF2為直角三角形,則這樣的點P有6個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.函數(shù)$f(x)={log_3}x-{(\frac{1}{2})^{x-2}}$的零點所在區(qū)間為( 。
A.(3,4)B.(2,3)C.(1,2)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.班主任為了對本班學生的考試成績進行分析,決定從全班25名女同學,15名男同學中隨機抽取一個容量為8的樣本進行分析.
(Ⅰ)如果按性別比例分層抽樣,可以得到多少個不同的樣本?(只要求寫出計算式即可,不必計算出結(jié)果)
(Ⅱ)隨機抽取8位,他們的數(shù)學分數(shù)從小到大排序是:60,65,70,75,80,85,90,95,物理分數(shù)從小到大排序是:72,77,80,84,88,90,93,95.
(i)若規(guī)定85分以上(包括85分)為優(yōu)秀,求這8位同學中恰有3位同學的數(shù)學和物理分數(shù)均為優(yōu)秀的概率;
(ii)若這8位同學的數(shù)學、物理分數(shù)事實上對應如下表:
學生編號12345678
數(shù)學分數(shù)x6065707580859095
物理分數(shù)y7277808488909395
根據(jù)上表數(shù)據(jù),用變量y與x的相關系數(shù)或散點圖說明物理成績y與數(shù)學成績x之間線性相關關系的強弱.如果具有較強的線性相關關系,求y與x的線性回歸方程(系數(shù)精確到0.01);如果不具有線性相關性,請說明理由.
參考公式:相關系數(shù)r=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sqrt{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}\sum_{i=1}^n{{{({y_i}-\overline y)}^2}}}}}}$;回歸直線的方程是:$\widehaty=bx+a$,其中對應的回歸估計值b=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,a=$\overline y-b\overline x$,$\widehat{y_i}$是與xi對應的回歸估計值.
參考數(shù)據(jù):$\overline x=77.5,\overline y=84.875,{\sum_{i=1}^8{({x_i}-\overline x)}^2}≈1050,{\sum_{i=1}^8{({y_i}-\overline y)}^2}$≈457,$\sum_{i=1}^8{({x_i}-\overline x)}({y_i}-\overline y)≈688,\sqrt{1050}≈32.4,\sqrt{457}≈21.4,\sqrt{550}$≈23.5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知向量$\overrightarrow a=({2,1}),\overrightarrow b=({-3,4})$,則$\overrightarrow a+\overrightarrow b$=( 。
A.(6,-3)B.(8,-3)C.(5,-1)D.(-1,5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知圓臺的上、下底面的半徑分別是3,4,且側(cè)面面積等于兩底面面積之和,求圓臺的母線長.

查看答案和解析>>

同步練習冊答案