【題目】給出下列四個(gè)命題:①若直線,那么直線必平行于平面內(nèi)的無數(shù)條直線;②一個(gè)長(zhǎng)為,寬為的矩形,其直觀圖的面積為;③若函數(shù)的定義域是,則的定義域是;④定義在上的函數(shù),若,則函數(shù)的圖象關(guān)于點(diǎn)中心對(duì)稱.其中所有正確命題的編號(hào)為____________.

【答案】①②③

【解析】

根據(jù)直線與平面的位置關(guān)系,直觀圖面積的求解,以及抽象函數(shù)定義域,函數(shù)對(duì)稱性的求解,結(jié)合選項(xiàng)即可逐一進(jìn)行判斷.

①直線,則直線//平面,

那么直線必平行于平面內(nèi)的無數(shù)條直線,故①正確;

②直觀圖的面積是原圖面積的倍,故可得直觀圖面積為,故②正確;

③函數(shù)的定義域是,故可得,且,

解得.故③正確;

④因?yàn)?/span>,故,

關(guān)于點(diǎn)對(duì)稱.故④錯(cuò)誤;

綜上所述,正確的選項(xiàng)為①②③.

故答案為:①②③.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

已知拋物線C的方程Cy2="2" p xp0)過點(diǎn)A1,-2.

I)求拋物線C的方程,并求其準(zhǔn)線方程;

II)是否存在平行于OAO為坐標(biāo)原點(diǎn))的直線l,使得直線l與拋物線C有公共點(diǎn),且直線OAl的距離等于?若存在,求出直線l的方程;若不存在,說明理由。

【答案】I)拋物線C的方程為,其準(zhǔn)線方程為II)符合題意的直線l 存在,其方程為2x+y-1 =0.

【解析】

試題()求拋物線標(biāo)準(zhǔn)方程,一般利用待定系數(shù)法,只需一個(gè)獨(dú)立條件確定p的值:(-222p·1,所以p2.再由拋物線方程確定其準(zhǔn)線方程:,()由題意設(shè),先由直線OA的距離等于根據(jù)兩條平行線距離公式得:解得,再根據(jù)直線與拋物線C有公共點(diǎn)確定

試題解析:解 (1)將(1,-2)代入y22px,得(-222p·1,

所以p2

故所求的拋物線C的方程為

其準(zhǔn)線方程為

2)假設(shè)存在符合題意的直線,

其方程為

因?yàn)橹本與拋物線C有公共點(diǎn),

所以Δ48t≥0,解得

另一方面,由直線OA的距離

可得,解得

因?yàn)椋?/span>1[,+),1∈[,+),

所以符合題意的直線存在,其方程為

考點(diǎn):拋物線方程,直線與拋物線位置關(guān)系

【名師點(diǎn)睛】求拋物線的標(biāo)準(zhǔn)方程的方法及流程

1)方法:求拋物線的標(biāo)準(zhǔn)方程常用待定系數(shù)法,因?yàn)槲粗獢?shù)只有p,所以只需一個(gè)條件確定p值即可.

2)流程:因?yàn)閽佄锞方程有四種標(biāo)準(zhǔn)形式,因此求拋物線方程時(shí),需先定位,再定量.

提醒:求標(biāo)準(zhǔn)方程要先確定形式,必要時(shí)要進(jìn)行分類討論,標(biāo)準(zhǔn)方程有時(shí)可設(shè)為y2=mxx2=mym≠0).

型】解答
結(jié)束】
22

【題目】已知橢圓的左右焦點(diǎn)與其短軸的一個(gè)端點(diǎn)是正三角形的三個(gè)頂點(diǎn),點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)直線過橢圓左焦點(diǎn)交橢圓于,為橢圓短軸的上頂點(diǎn),當(dāng)直線時(shí),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)盒子里裝有9個(gè)球,其中有4個(gè)紅球,3個(gè)黃球和2個(gè)綠球,這些球除顏色外完全相同

從盒子中隨機(jī)取出2個(gè)球,求取出的2個(gè)球顏色相同的概率.

從盒子中隨機(jī)取出4個(gè)球,其中紅球個(gè)數(shù)分別記為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形ABCD為平行四邊形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EB=,EF=1,BC=,且M是BD的中點(diǎn)。

(1)求證:EM∥平面ADF;

(2)求二面角D-AF-B的余弦值;

(3)在線段ED上是否存在一點(diǎn)P,使得BP∥平面ADF?若存在,求出EP的長(zhǎng)度;若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)確定函數(shù)在定義域上的單調(diào)性;

(2)若上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC的內(nèi)角A,B,C的對(duì)邊分別為ab,c,已知△ABC的面積為

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方體ABCDA1B1C1D1棱長(zhǎng)為4,點(diǎn)在棱上,點(diǎn)在棱上,且.在側(cè)面內(nèi)以為一個(gè)頂點(diǎn)作邊長(zhǎng)為1的正方形,側(cè)面內(nèi)動(dòng)點(diǎn)滿足到平面距離等于線段長(zhǎng)的倍,則當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),三棱錐的體積的最小值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為保障公平性,高考時(shí)每個(gè)考點(diǎn)都要安裝手機(jī)屏蔽儀,要求在考點(diǎn)周圍1千米處不能收到手機(jī)信號(hào),如圖,檢查員抽查某市一考點(diǎn),以考點(diǎn)正西千米的處開始為檢查起點(diǎn),沿著一條北偏東方向的公路,以每小時(shí)12千米的速度行駛,并用手機(jī)接通電話,問從起點(diǎn)開始計(jì)時(shí),最長(zhǎng)經(jīng)過多少分鐘檢查員開始收不到信號(hào)(點(diǎn)開始),并至少持續(xù)多長(zhǎng)時(shí)間(之間)該考點(diǎn)才算檢查合格?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:,直線過定點(diǎn).

(1)若與圓相切,求的方程;

(2)若與圓相交于兩點(diǎn),線段的中點(diǎn)為,又的交點(diǎn)為,判斷是否為定值.若是,求出定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案