11.已知O為坐標原點,F(xiàn)1,F(xiàn)2是雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點,P是雙曲線右支上一點,PM為∠F1PF2的角平分線,過F1作PM的垂線交PM于點M,則|OM|的長度為( 。
A.aB.bC.$\frac{a}{2}$D.$\frac{2}$

分析 先畫出雙曲線和焦點三角形,由題意可知PM是TF1的中垂線,再利用雙曲線的定義,數(shù)形結(jié)合即可得結(jié)論.

解答 解:依題意如圖,延長F1M,交PF2于點T,
∵PM是∠F1PF2的角分線.TF1是PM的垂線,
∴PM是TF1的中垂線,∴|PF1|=|PT|,
∵P為雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1上一點,
∴|PF1|-|PF2|=2a,
∴|TF2|=2a,
在三角形F1F2T中,MO是中位線,
∴|OM|=a. 
故選:A.

點評 本題考查了雙曲線的定義的運用以及雙曲線標準方程的意義,解題時要善于運用曲線定義,數(shù)形結(jié)合的思想解決問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知sinφ=$\frac{3}{5}$,且φ∈($\frac{π}{2}$,π),函數(shù)f(x)=sin(ωx+φ)(ω>0)的圖象的相鄰兩條對稱軸之間的距離等于$\frac{π}{2}$,則f($\frac{π}{8}$)的值為( 。
A.$\frac{\sqrt{2}}{10}$B.-$\frac{\sqrt{2}}{10}$C.$\frac{7\sqrt{2}}{10}$D.-$\frac{7\sqrt{2}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下面給出四個隨機變量:
①一高速公路上某收費站在1小時內(nèi)經(jīng)過的車輛數(shù)ξ;
②一個沿直線y=x進行隨機運動的質(zhì)點,它在該直線上的位置η;
③某城市在1天內(nèi)發(fā)生的火警次數(shù);
④1天內(nèi)的溫度η.
其中是離散型隨機變量的是( 。
A.①②B.③④C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.4名教師、3名男生、2名女生排成一排,要求3名男生排在一起,2名女生排在一起,共有多少種不同的排隊方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,有一正三角形鐵皮余料,欲利用余料剪裁出一個矩形(矩形的一個邊在三角形的邊上),并以該矩形制作一鐵皮圓柱的側(cè)面.問:如何剪裁,才能使得鐵皮圓柱的體積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知雙曲線x2-2y2=2的左、右兩個焦點為F1、F2,動點P滿足|PF1|+|PF2|=4.
(1)求動點P的軌跡E的方程;
(2)設(shè)過F2且不垂直于坐標軸的動直線l交軌跡E于A、B兩點,問:線段OF2上是否存在一點D,使得以DA、DB為鄰邊的平行四邊形為菱形?作出判斷并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$(a>0,b>0)的一條漸近線經(jīng)過點P(1,-2),則該雙曲線的離心率為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),F(xiàn)是右焦點,過F作雙曲線C在第一、第三象限漸近線的垂線l,若l與雙曲線的左右兩支都相交,則雙曲線的離心率e的取值范圍是(  )
A.($\sqrt{2}$,+∞)B.($\sqrt{3}$,+∞)C.(2,+∞)D.($\sqrt{5}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若正四棱錐的側(cè)棱長為$\sqrt{3}$,側(cè)面與底面所成的角是45°,則該正四棱錐的體積是( 。
A.$\frac{2}{3}$B.$\frac{4}{3}$C.$\frac{2\sqrt{2}}{3}$D.$\frac{4\sqrt{2}}{3}$

查看答案和解析>>

同步練習(xí)冊答案