15.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-1,k),若$\overrightarrow{a}$⊥$\overrightarrow$,則實(shí)數(shù)k=2.

分析 由向量垂直可得$\overrightarrow{a}•\overrightarrow$=2×(-1)+1×k=0,解關(guān)于k的方程可得.

解答 解:∵$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-1,k),且$\overrightarrow{a}$⊥$\overrightarrow$,
∴$\overrightarrow{a}•\overrightarrow$=2×(-1)+1×k=0,解得k=2
故答案為:2.

點(diǎn)評(píng) 本題考查數(shù)量積與向量垂直的關(guān)系,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.極坐標(biāo)方程為lgρ=1+lgcosθ,則曲線上的點(diǎn)(ρ,θ)的軌跡是(x-5)2+y2=25(x≠0)..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如果x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≥0\\ x+y-2≤0\\ x-2y≤0\end{array}\right.$,則目標(biāo)函數(shù)z=2x+y的最大值是$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知集合A={1,2,3,4,5},B={2,4,6},則∁A(A∩B)={1,3,5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知△ABC中,AB=1,sinA+sinB=$\sqrt{2}$sinC,S△ABC=$\frac{3}{16}$sinC,則cosC=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,網(wǎng)格紙上正方形小格的邊長為1,圖中粗線畫出的是某零件的三視圖,則該零件的表面積為( 。
A.37πB.46πC.50πD.54π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知單調(diào)遞增的等比數(shù)列{an}中,a2•a6=16,a3+a5=10,則數(shù)列{an}的前n項(xiàng)和Sn=${2^{n-1}}-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=sinx,g(x)=ex•f′(x),其中e為自然對(duì)數(shù)的底數(shù).
(I)求曲線y=g(x)在點(diǎn)(0,g(0))處的切線方程;
(Ⅱ)若對(duì)任意x∈[-$\frac{π}{2}$,0],不等式g(x)≥x•f(x)+m恒成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)試探究當(dāng)x∈[-$\frac{π}{2}$,$\frac{π}{2}$]時(shí),方程g(x)=x•f(x)的解的個(gè)數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知在△ABC中,若sinA+cosA=$\frac{1}{5}$,求sinAcosA+sinA-cosA的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案