設(shè)拋物線C:的焦點(diǎn)為F,經(jīng)過(guò)點(diǎn)F的直線與拋物線交于A、B兩點(diǎn).
(1)若,求線段中點(diǎn)M的軌跡方程;
(2)若直線AB的方向向量為,當(dāng)焦點(diǎn)為時(shí),求的面積;
(3)若M是拋物線C準(zhǔn)線上的點(diǎn),求證:直線的斜率成等差數(shù)列.

(1)  ;(2) 。
(3)顯然直線的斜率都存在,分別設(shè)為
點(diǎn)的坐標(biāo)為
聯(lián)立方程組得到 ,
,得到

解析試題分析:
思路分析:(1) 利用“代入法”。
(2) 聯(lián)立方程組得,,應(yīng)用弦長(zhǎng)公式求 
,得到面積。
(3)直線的斜率都存在,分別設(shè)為
點(diǎn)的坐標(biāo)為
設(shè)直線AB:,代入拋物線得, 確定 ,
,得到
解:(1) 設(shè),,焦點(diǎn),則由題意,即 
所求的軌跡方程為,即 
(2) ,直線
得,, 
。
(3)顯然直線的斜率都存在,分別設(shè)為
點(diǎn)的坐標(biāo)為
設(shè)直線AB:,代入拋物線得, 所以,
,
因而,
因而 
,故
考點(diǎn):等差數(shù)列,求軌跡方程,直線與拋物線的位置關(guān)系。
點(diǎn)評(píng):中檔題,涉及“弦中點(diǎn)”問(wèn)題,往往利用“代入法”求軌跡方程。涉及直線與圓錐曲線的位置關(guān)系問(wèn)題,往往通過(guò)聯(lián)立方程組,應(yīng)用韋達(dá)定理,簡(jiǎn)化解題過(guò)程。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的對(duì)稱中心為坐標(biāo)原點(diǎn),上焦點(diǎn)為,離心率.

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)軸上的動(dòng)點(diǎn),過(guò)點(diǎn)作直線與直線垂直,試探究直線與橢圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓的離心率,且橢圓C上一點(diǎn)到點(diǎn)Q的距離最大值為4,過(guò)點(diǎn)的直線交橢圓于點(diǎn)
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P為橢圓上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的焦點(diǎn)在軸上,離心率,且經(jīng)過(guò)點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)斜率為的直線與橢圓相交于兩點(diǎn),求證:直線的傾斜角互補(bǔ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓的左焦點(diǎn)為,左、右頂點(diǎn)分別為,上頂點(diǎn)為,過(guò)三點(diǎn)作圓  
(Ⅰ)若線段是圓的直徑,求橢圓的離心率;
(Ⅱ)若圓的圓心在直線上,求橢圓的方程;
(Ⅲ)若直線交(Ⅱ)中橢圓于,交軸于,求的最大值  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,△AF1F2為正三角形,且以線段F1F2為直徑的圓與直線相切.
(Ⅰ)求橢圓C的方程和離心率e;
(Ⅱ)若點(diǎn)P為焦點(diǎn)F1關(guān)于直線的對(duì)稱點(diǎn),動(dòng)點(diǎn)M滿足. 問(wèn)是否存在一個(gè)定點(diǎn)T,使得動(dòng)點(diǎn)M到定點(diǎn)T的距離為定值?若存在,求出定點(diǎn)T的坐標(biāo)及此定值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

曲線C上任一點(diǎn)到定點(diǎn)(0,)的距離等于它到定直線的距離.
(1)求曲線C的方程;
(2)經(jīng)過(guò)P(1,2)作兩條不與坐標(biāo)軸垂直的直線分別交曲線C于A、B兩點(diǎn),且,設(shè)M是AB中點(diǎn),問(wèn)是否存在一定點(diǎn)和一定直線,使得M到這個(gè)定點(diǎn)的距離與它到定直線的距離相等.若存在,求出這個(gè)定點(diǎn)坐標(biāo)和這條定直線的方程.若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓的左焦點(diǎn)為F, 離心率為, 過(guò)點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長(zhǎng)為.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)A, B分別為橢圓的左右頂點(diǎn), 過(guò)點(diǎn)F且斜率為k的直線與橢圓交于C, D兩點(diǎn). 若, 求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知拋物線的焦點(diǎn)在拋物線上.

(Ⅰ)求拋物線的方程及其準(zhǔn)線方程;
(Ⅱ)過(guò)拋物線上的動(dòng)點(diǎn)作拋物線的兩條切線、, 切點(diǎn)為、.若、的斜率乘積為,且,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案