15.已知函數(shù)f(x)=sin(ωx+φ)($ω>0,|φ|<\frac{π}{2}$)的部分圖象如圖所示,則y=f(x)的圖象可由y=cosωx的圖象( 。
A.向右平移$\frac{π}{3}$個(gè)長(zhǎng)度單位B.向左平移$\frac{π}{3}$個(gè)長(zhǎng)度單位
C.向右平移$\frac{π}{6}$個(gè)長(zhǎng)度單位D.向左平移$\frac{π}{6}$個(gè)長(zhǎng)度單位

分析 根據(jù)函數(shù)的圖象求出函數(shù)的周期,然后可以求出ω,通過(guò)函數(shù)經(jīng)過(guò)的最大值點(diǎn)求出φ值,即可得到函數(shù)y=Asin(ωx+ϕ)的解析式.根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律即可得解.

解答 解:由函數(shù)的圖象可知:T=($\frac{7π}{12}$-$\frac{π}{3}$)×4=π,
∴ω=$\frac{2π}{T}$=2.
當(dāng)x=$\frac{π}{3}$,函數(shù)取得最大值1,所以sin(2×$\frac{π}{3}$+φ)=1,可得:$\frac{2π}{3}$+φ=2kπ+$\frac{π}{2}$,k∈Z,
∵|φ|<$\frac{π}{2}$,
∴k=0,φ=-$\frac{π}{6}$
∴f(x)=sin(2x-$\frac{π}{6}$).
∵cos2(x-$\frac{π}{3}$)=cos(2x-$\frac{π}{2}$-$\frac{π}{6}$)=-sin($\frac{π}{6}$-2x)=sin(2x-$\frac{π}{6}$).
∴y=cos2x的圖象向右平移$\frac{π}{3}$個(gè)長(zhǎng)度單位即可得到f(x)=sin(2x-$\frac{π}{6}$)的圖象.
故選:A.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是由函數(shù)y=sin(ωx+ϕ)的部分圖象確定其解析式,考查了函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,其中φ的求解是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)=x2-cosx,$x∈[-\frac{π}{2},\;\frac{π}{2}]$,則滿足$f({x_0})<f(\frac{π}{3})$的x0的取值范圍是(-$\frac{π}{3}$,$\frac{π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知f(x)=ax2+bx+c,(a>0),若f(-1)=f(3),則f(-1),f(1),f(4)的大小關(guān)系為 ( 。
A.f(-1)<f(1)<f(4)B.f(1)<f(-1)<f(4)C.f(-1)<f(4)<f(1)D.f(4)<f(-1)<f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在區(qū)間[0,2]上隨機(jī)地取一個(gè)數(shù)x,則事件“0≤x≤$\frac{3}{2}$”發(fā)生的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知全集U=R,集合A={x|2<x≤3},集合B={x|2≤x≤4},則(∁UA)∩B等于( 。
A.{x|3≤x≤4}B.{x|3<x≤4}C.{x|x=2或3<x≤4}D.{x|3<x<4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)$f(x)=\sqrt{2x-{x^2}}$的單調(diào)遞增區(qū)間是( 。
A.(1,+∞)B.[0,1]C.(-∞,1)D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知命題p:?x∈R,使得x2-2x+m<0,命題q:方程$\frac{{x}^{2}}{m+1}$+$\frac{{y}^{2}}{2-m}$=1表示橢圓.
(Ⅰ)寫出命題p的否定形式;
(Ⅱ)若命題p∨q為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)集合A={x∈Z|x>-1},則(  )
A.∅∉AB.2∈AC.$\sqrt{2}$∈AD.{$\sqrt{2}$}⊆A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知$\overrightarrow a=(1,1),\overrightarrow b=(m,2)$,且(2$\overrightarrow{a}$+$\overrightarrow$)∥$\overrightarrow{a}$,則實(shí)數(shù)m的值等于( 。
A.0B.-1C.1D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案