分析 (1)由a,b,c>0,分別運用三元均值不等式和二元均值不等式,即可得證;
(2)由三角形的內角和定理可得A+B+C=π,再由三元均值不等式即可得證.
解答 證明:(1)由a,b,c>0,可得
$\frac{1}{{a}^{3}}$+$\frac{1}{^{3}}$+$\frac{1}{{c}^{3}}$+abc≥3$\root{3}{\frac{1}{(abc)^{3}}}$+abc
=$\frac{3}{abc}$+abc≥2$\sqrt{\frac{3}{abc}•abc}$=2$\sqrt{3}$
(當且僅當a=b=c$\root{6}{3}$時,等號成立);
(2)$\frac{π}{A}$+$\frac{π}{B}$+$\frac{π}{C}$=π($\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$)
=(A+B+C)($\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$)≥3$\root{3}{ABC}$•3$\root{3}{\frac{1}{ABC}}$=9
(當且僅當A=B=C=$\frac{π}{3}$時,等號成立).
點評 本題考查不等式的證明,注意運用基本不等式以及三角形的內角和定理,考查推理能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com