11.已知空間向量$\overrightarrow a=({2,-1,3})$,$\overrightarrow b=({-1,4,-2})$,$\overrightarrow c=({7,0,λ})$,若$\overrightarrow a,\overrightarrow b,\overrightarrow c$三個(gè)向量共面,則實(shí)數(shù)λ=( 。
A.8B.10C.11D.12

分析 利用空間向量共面的條件,設(shè)出實(shí)數(shù)x,y,使$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow$,列出方程組,求出λ的值即可.

解答 解:∵向量$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$共面,
∴存在實(shí)數(shù)x,y使得$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow$,
即(7,0,λ)=(2x-y,-x+4y,3x-2y),
∴$\left\{\begin{array}{l}{2x-y=7}\\{-x+4y=0}\\{3x-2y=λ}\end{array}\right.$;
解得x=4,y=1,λ=10.
故選:B.

點(diǎn)評 本題考查了空間向量的共面問題,也考查了方程組的解法與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知圓的方程為x2+y2=$\frac{7}{4}$,設(shè)過點(diǎn)M(0,1)的直線分別與該圓交于點(diǎn)A、B,若|AM|=3|MB|,則直線AB的斜率為$±\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.化簡方程$\sqrt{(x-1)^{2}+{y}^{2}}$+$\sqrt{(x+1)^{2}+{y}^{2}}$=4為有理方程,其結(jié)果是$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.?dāng)?shù)列{(-1)n(2n-1)}的前2015項(xiàng)的和S2015=-1008.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某家庭進(jìn)行理財(cái)投資,投資債券產(chǎn)品的收益f(x)與投資額x成正比,投資股票產(chǎn)品的收益g(x)與投資額x的算術(shù)平方根成正比,已知投資1萬元時(shí)兩類產(chǎn)品的收益分別是0.125萬元和0.5萬元.
(1)分別寫出兩種產(chǎn)品的收益與投資的函數(shù)關(guān)系式;
(2)該家庭現(xiàn)有20萬資金,全部用于理財(cái)投資,問:怎樣分配資金能使投資獲得最大收益,其最大收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.${(x-\frac{1}{x})^6}$展開式中的常數(shù)項(xiàng)為( 。
A.15B.20C.-1D.-20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.x2+$\frac{a}$x+$(\frac{2a})^{2}$-$(\frac{2a})^{2}$=(x+$\frac{2a}$)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.用簡便方法進(jìn)行計(jì)算:
(1)($\frac{1}{4}$+$\frac{1}{6}$-$\frac{1}{2}$)×(-12);
(2)24$\frac{1}{24}$×(-8).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)f(x)=$\frac{x-1}{x+1}$,則f(x)+f($\frac{1}{x}$)=( 。
A.$\frac{x-1}{x+1}$B.$\frac{1}{x}$C.1D.0

查看答案和解析>>

同步練習(xí)冊答案