20.用簡(jiǎn)便方法進(jìn)行計(jì)算:
(1)($\frac{1}{4}$+$\frac{1}{6}$-$\frac{1}{2}$)×(-12);
(2)24$\frac{1}{24}$×(-8).

分析 (1)(2)利用分配律即可得出.

解答 解:(1)原式=-(12×$\frac{1}{4}$+12×$\frac{1}{6}$-$12×\frac{1}{2}$)=-(3+2-6)=1.
(2)原式=-$(24×8+\frac{1}{24}×8)$=-$(192+\frac{1}{3})$=-$\frac{577}{3}$.

點(diǎn)評(píng) 本題考查了分配律的應(yīng)用,考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.指出下列各組命題中,p是q的什么條件:在“充分而不必要條件”,“必要而不充分條件”,“充要條件”,“即不充分也不必要條件”中選出一種,為什么?
(1)設(shè)x,y是實(shí)數(shù),p:x>y,q:|x|>|y|;
(2)p:a∈N,q:a∈Z;
(3)p:D在△ABC的邊BC的中線上,q:S△ABD=△ACD;
(4)p:2lga=lg(5a-6),q:a=2;
(5)p:小王的學(xué)習(xí)成績(jī)優(yōu)秀,q:小王是三好學(xué)生.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知空間向量$\overrightarrow a=({2,-1,3})$,$\overrightarrow b=({-1,4,-2})$,$\overrightarrow c=({7,0,λ})$,若$\overrightarrow a,\overrightarrow b,\overrightarrow c$三個(gè)向量共面,則實(shí)數(shù)λ=(  )
A.8B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列各函數(shù)中,值域?yàn)閇0,+∞)的是( 。
A.y=2-$\frac{x}{2}$B.y=$\sqrt{1-2x}$C.y=x2+x+1D.y=$\frac{1}{x+1}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.若f(n)=1+$\frac{1}{{\sqrt{2}}}$+$\frac{1}{{\sqrt{3}}}$+…+$\frac{1}{{\sqrt{n}}}$,n∈N,當(dāng)n≥3時(shí),證明:f(n)>$\sqrt{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知點(diǎn)P為曲線C:y=x3-x上一點(diǎn),曲線C在點(diǎn)P處的切線l1交曲線C于點(diǎn)Q(異于點(diǎn)P),若直線l1的斜率為k1,曲線C在點(diǎn)Q處的切線l2的斜率為k2,則4k1-k2的值為( 。
A.-5B.-4C.-3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列說法正確的是( 。
A.命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B.已知y=f(x)是R上的可導(dǎo)函數(shù),則“f′(x0)=0”是“x0是函數(shù)y=f(x)的極值點(diǎn)”的必要不充分條件
C.命題“存在x∈R,使得x2+x+1<0”的否定是:“對(duì)任意x∈R,均有x2+x+1<0”
D.命題“角α的終邊在第一象限角,則α是銳角”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{a{x}^{2}+x-a}{{x}^{2}-x+1}$,a∈R.
(1)若a=0,試求函數(shù)f(x)的值域;
(2)若不等式f(x)>0的解集為{x|-$\frac{1}{2}$<x<2},求實(shí)數(shù)a的值;
(3)解不等式f(x)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=lnx-x+1.
(1)求函數(shù)f(x)的圖象在點(diǎn)x=2處的切線方程;
(2)設(shè)g(x)=$\frac{{x}^{2}+2kx+k}{x}$(k>0),對(duì)?x1∈(0,+∞),?x2∈(-∞,0),使得f(x1)≤g(x2)成立,求k的取值范圍;
(3)設(shè)bn=$\frac{f(n+1)+n}{{n}^{3}}$,證明:$\sum_{i=2}^{n}$bi<1(n≥2,n∈N+).

查看答案和解析>>

同步練習(xí)冊(cè)答案