分析 分別化簡得 A={x|-2<x<4},B={x|m-3<x<m}.
(1)由A∩B=(2,4)可得m-3=2且m≥4,解出即可.
(2)由B⊆A,即$\left\{\begin{array}{l}m-3≥-2\\ m≤4\end{array}\right.$,解得即可.
解答 解:化簡得 A={x|-2<x<4},B={x|m-3<x<m}.
(1)∵A∩B=(2,4),∴m-3=2且m≥4,則m=5.
(2)∵B⊆A,即$\left\{\begin{array}{l}m-3≥-2\\ m≤4\end{array}\right.$,解得1≤m≤4.
∴m的取值范圍是[1,4].
點評 本題考查了集合的運算性質(zhì)、不等式的解法,考查了推理能力與計算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $\sqrt{3}$ | C. | $-\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $f(x)=2sin(\frac{4}{3}x+\frac{2}{9}π)$ | B. | $f(x)=2sin(\frac{4}{3}x+\frac{25}{18}π)$ | ||
C. | $f(x)=2sin(\frac{3}{2}x+\frac{π}{4})$ | D. | $f(x)=2sin(\frac{3}{2}x+\frac{5}{4}π)$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com