13.cos570°=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$\sqrt{3}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

分析 原式中的角度變形后,利用誘導(dǎo)公式及特殊角的三角函數(shù)值計(jì)算即可得到結(jié)果.

解答 解:cos570°=cos(360°+210°)=cos210°=cos(180°+30°)=-cos30°=-$\frac{\sqrt{3}}{2}$,
故選:A.

點(diǎn)評(píng) 此題考查了運(yùn)用誘導(dǎo)公式化簡求值,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知復(fù)數(shù)z=x+yi(x,y∈R),且|z-2|=$\sqrt{3}$,則$\frac{y+1}{x}$的最大值為( 。
A.$\sqrt{3}$B.$\sqrt{6}$C.2+$\sqrt{6}$D.2-$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知命題A={x|x2-2x-8<0},B=$\left\{{\left.x\right|\frac{x-m+3}{x-m}<0,m∈R}\right\}$.
(1)若A∩B=(2,4),求m的值;
(2)若B⊆A,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.由曲線y=sinx,y=cosx與直線x=0,x=$\frac{π}{2}$所圍成的平面圖形(下圖中的陰影部分)的面積是2$\sqrt{2}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)$f(x)=cosx•sin({x+\frac{π}{3}})-\sqrt{3}{cos^2}x+\frac{{\sqrt{3}}}{4}$,x∈R.
(1)求f(x)的最小正周期和對(duì)稱軸方程;
(2)求不等式f(x)≥$\frac{1}{4}$中x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知向量$\overrightarrow{a}$=(3,4),$\overrightarrow$=(-3,1),$\overrightarrow{a}$與$\overrightarrow$的夾角為θ,則tanθ等于( 。
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.若向量$\overrightarrow{a}$的始點(diǎn)為A(-2,4),終點(diǎn)為B(2,1).求:
(Ⅰ)向量$\overrightarrow{a}$的模.
(Ⅱ)與$\overrightarrow{a}$平行的單位向量的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.i為虛數(shù)單位,則$\frac{1-2i}{{{{(1+i)}^2}}}$=$-1-\frac{1}{2}i$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合{a,b,c}={0,1,2},且下列三個(gè)關(guān)系:①a≠2;②b=2;③c≠0有且只有一個(gè)正確,則a+2b+5c等于( 。
A.4B.5C.7D.11

查看答案和解析>>

同步練習(xí)冊(cè)答案