11.(1)若f(x)=cos2(2x+$\frac{π}{6}$),則f′(x)=-2sin(4x+$\frac{π}{3}$);
(2)若f(x)=ln$\sqrt{\frac{1-x}{1+x}}$,則f′(x)=$\frac{1}{{x}^{2}-1}$.

分析 根據(jù)函數(shù)的導(dǎo)數(shù)公式進行計算即可.

解答 解:(1)∵f(x)=cos2(2x+$\frac{π}{6}$),
∴f′(x)=2cos(2x+$\frac{π}{6}$)(-sin(2x+$\frac{π}{6}$))×2=-2sin(4x+$\frac{π}{3}$).
(2)∵f(x)=ln$\sqrt{\frac{1-x}{1+x}}$=$\frac{1}{2}$ln$\frac{1-x}{1+x}$=$\frac{1}{2}$ln(1-x)-$\frac{1}{2}$ln(1+x),
∴f′(x)=$\frac{1}{2}•\frac{1}{1-x}×(-1)$-$\frac{1}{2}•\frac{1}{1+x}$=$\frac{1}{2}•\frac{1}{x-1}$-$\frac{1}{2}•\frac{1}{1+x}$=$\frac{1}{(x+1)(x-1)}$=$\frac{1}{{x}^{2}-1}$,
故答案為:-2sin(4x+$\frac{π}{3}$),$\frac{1}{{x}^{2}-1}$

點評 本題主要考查函數(shù)的導(dǎo)數(shù)的計算,根據(jù)復(fù)合函數(shù)的導(dǎo)數(shù)公式是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖,在平行四邊形ABCD中,AB=6,AD=4.點P是DC邊的中點,則$\overrightarrow{PA}•\overrightarrow{PB}$的值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在正棱柱ABC-A1B1C1中,E,F(xiàn)分別為線段AA1,C1B的中點,求證:EF∥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=x2-(a+1)x-4(a+5),g(x)=ax2-(3a+1)x+3,其中a<0.若存在正整數(shù)m、n,當(dāng)x0∈(m,n)時,有f(x0)<0,g(x0)>0同時成立,則m+n的值為(  )
A.5B.7C.9D.7或8或9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,a,b,c分別為角A,B,C的對邊,且4sin2$\frac{A+C}{2}$-cos2B=$\frac{23}{9}$.求cosB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.a(chǎn)1=2,an+1=an+ln(1+$\frac{1}{n}$),an=2+lnn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知log23=a,log25=b,求log245.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.計算:
(1)2lg2+lg25;
(2)3${\;}^{1+lo{g}_{3}2}$;
(3)3log22+log2$\sqrt{2}$;
(4)lg60-lg6;
(5)log280-log24-log25;
(6)log3$\frac{27}{5}$+log325-log35.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={x|0<x<5,x∈Z},B={-1,0,2},C={z|z=x+y,x∈A,y∈B},則集合C中元素的個數(shù)為( 。
A.6B.7C.8D.9

查看答案和解析>>

同步練習(xí)冊答案