18.已知圓(x+2)2+(y-2)2=a截直線x+y+2=0所得弦長為6,則實(shí)數(shù)a的值為11.

分析 求出弦心距,再由條件根據(jù)弦長公式求得a的值.

解答 解:圓(x+2)2+(y-2)2=a,圓心(-2,2),半徑$\sqrt{a}$.
故弦心距d=$\frac{|-2+2+2|}{\sqrt{2}}$=$\sqrt{2}$.
再由弦長公式可得a=2+9,∴a=11;
故答案為:11.

點(diǎn)評 本題主要考查直線和圓的位置關(guān)系,點(diǎn)到直線的距離公式,弦長公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=$\left\{\begin{array}{l}{x+2}&{(x>0)}\\{-3}&{(x≤0)}\end{array}\right.$的值域是(  )
A.(2,+∞)B.(2,+∞)∪{-3}C.[-3,∞)D.(-∞,-3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.長為4、寬為3的矩形ABCD的外接圓為圓O,在圓O內(nèi)任意取點(diǎn)M,則點(diǎn)M在矩形ABCD內(nèi)的概率為$\frac{48}{25π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若對任意的x1∈[e-1,e],總存在唯一的x2∈[-1,1],使得lnx1-x1+1+a=x22ex2成立,則實(shí)數(shù)a的取值范圍是(  )
A.[$\frac{2}{e}$,e+1]B.(e+$\frac{1}{e}$-2,e]C.[e-2,$\frac{2}{e}$)D.($\frac{2}{e}$,2e-2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若α∈(0,$\frac{π}{2}$),且sin2α+cos($\frac{π}{2}$+2α)=$\frac{3}{10}$,則tanα=( 。
A.$\frac{1}{7}$B.$\frac{1}{3}$C.3D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow$=(sinα,cosα)且$\overrightarrow{a}$∥$\overrightarrow$,則tanα=( 。
A.3B.-3C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.①若函數(shù)f(x)定義域?yàn)镽,則g(x)=f(x)-f(-x)是奇函數(shù);
②已知x1和x2是函數(shù)定義域內(nèi)的兩個值(x1<x2),若f(x1)>f(x2),則f(x)在定義域內(nèi)單調(diào)遞減;
③若f(x)是定義在R上的奇函數(shù),f(x+2)也是奇函數(shù),則f(x)是以4為周期的周期函數(shù).
以上三個命題中,正確命題是①③.(把所有正確結(jié)論的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.?dāng)?shù)列{(-1)n•n}的前2016項(xiàng)的和S2016為( 。
A.-2016B.-1008C.2016D.1008

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列說法:
①將一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變;
②設(shè)一個線性回歸方程$\hat y=3-5x$,變量x增加1個單位時,y平均減少5個單位;
③設(shè)具有相關(guān)關(guān)系的兩個變量x,y的相關(guān)系數(shù)為r,則|r|越接近于0,x和y之間的線性相關(guān)程度越強(qiáng);
④在一個2×2列聯(lián)表中,由計(jì)算得K2的值,則K2的值越大,判斷兩個變量間有關(guān)聯(lián)的把握就越大.其中錯誤的個數(shù)是( 。
A.3B.2C.1D.0

查看答案和解析>>

同步練習(xí)冊答案