9.已知三個(gè)點(diǎn)A(2,1)、B(3,2)、D(-1,4).
(Ⅰ)求證:$\overrightarrow{AB}⊥\overrightarrow{AD}$;
(Ⅱ)要使四邊形ABCD為矩形,求點(diǎn)C的坐標(biāo),并求矩形ABCD兩對(duì)角線所夾銳角的余弦值.

分析 (I)運(yùn)用平面向量的數(shù)量積得出$\overrightarrow{AB}•\overrightarrow{AD}$=1×(-3)+1×3=0,求解即可.
(II)$\overrightarrow{AB}=\overrightarrow{DC}$.$\overrightarrow{AB}⊥\overrightarrow{AD}$,坐標(biāo)得出點(diǎn)C的坐標(biāo)為(0,5).再運(yùn)用數(shù)量積求解得出cosθ=$\frac{16}{20}$=$\frac{4}{5}$>0.

解答 解(Ⅰ)證明:A(2,1),B(3,2),D(-1,4).
∴$\overrightarrow{AB}$=(1,1),$\overrightarrow{AD}$=(-3,3).
又∵$\overrightarrow{AB}•\overrightarrow{AD}$=1×(-3)+1×3=0,
∴$\overrightarrow{AB}⊥\overrightarrow{AD}$.
(Ⅱ)∵$\overrightarrow{AB}⊥\overrightarrow{AD}$,若四邊形ABCD為矩形,則$\overrightarrow{AB}=\overrightarrow{DC}$.
設(shè)C點(diǎn)的坐標(biāo)為(x,y),則有(1,1)=(x+1,y-4),
∴$\left\{\begin{array}{l}{x+1=1}\\{y-4=1}\end{array}\right.$
即$\left\{\begin{array}{l}{x=0}\\{y=5}\end{array}\right.$
∴點(diǎn)C的坐標(biāo)為(0,5).
由于$\overrightarrow{AC}$=(-2,4),$\overrightarrow{BD}$=(-4,2),
∴$\overrightarrow{AC}•\overrightarrow{BD}$=(-2)×(-4)+4×2=16,$|{\overrightarrow{AC}}|=|{\overrightarrow{BD}}|$=2$\sqrt{5}$.
設(shè)對(duì)角線AC與BD的夾角為θ,則cosθ=$\frac{16}{20}$=$\frac{4}{5}$>0.
故矩形ABCD兩條對(duì)角線所夾銳角的余弦值為$\frac{4}{5}$.

點(diǎn)評(píng) 本題考查了運(yùn)用向量解決平面直線的位置關(guān)系,平面幾何中的邊長(zhǎng),夾角問題,準(zhǔn)確計(jì)算化簡(jiǎn),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.等差數(shù)列{an}中,a2+a5+a8=9,那么方程x2+(a4+a6)x+10=0的根的情況( 。
A.沒有實(shí)根B.兩個(gè)相等實(shí)根C.兩個(gè)不等實(shí)根D.無法判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.同樣規(guī)格的黑、白兩色正方形瓷磚鋪設(shè)的若干圖案,則按此規(guī)律第n個(gè)圖案中需用黑色瓷磚4n+8塊(用含n的代數(shù)式表示

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)f(x)=eax(a>0).過點(diǎn)P(a,0)且平行于y軸的直線與曲線C:y=f(x)的交點(diǎn)為Q,曲線C過點(diǎn)Q的切線交x軸于點(diǎn)R,則△PQR的面積的最小值是( 。
A.1B.$\frac{\sqrt{2e}}{2}$C.$\frac{e}{2}$D.$\frac{{e}^{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知P在△ABC所在平面內(nèi),且$\overrightarrow{PA}$•$\overrightarrow{PB}$=$\overrightarrow{PB}$•$\overrightarrow{PC}$=$\overrightarrow{PC}$•$\overrightarrow{PA}$,則點(diǎn)P是△ABC的( 。
A.重心B.內(nèi)心C.外心D.垂心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知點(diǎn)P是拋物線y2=2x上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到點(diǎn)M(0,2)的距離與點(diǎn)P到該拋物線準(zhǔn)線的距離之和的最小值為( 。
A.3B.$\frac{\sqrt{17}}{2}$C.$\sqrt{5}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知ABCDEF是正六邊形,在下列4個(gè)表達(dá)式
(1)$\overrightarrow{FE}$+$\overrightarrow{ED}$,(2)2$\overrightarrow{BC}$+$\overrightarrow{DC}$,(3)$\overrightarrow{BC}$+$\overrightarrow{CD}$+$\overrightarrow{EC}$,(4)2$\overrightarrow{ED}$-$\overrightarrow{FA}$中,運(yùn)算結(jié)果與$\overrightarrow{AC}$相等的表達(dá)式共有4個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知向量$\overrightarrow a=({-1,\sqrt{3}}),\overrightarrow b=({2,0})$,則向量$\overrightarrow b$在$\overrightarrow a$方向上的投影為( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,∠BCA=90°,BC在BA的投影為BD(即CD⊥AB),如圖,有射影定理BC2=BD•BA.類似,在四面體P-ABC中,PA,PB,PC兩兩垂直,點(diǎn)P在底面ABC的射影為點(diǎn)O(即PO⊥面ABC),則△PAB,△ABO,△ABC的面積S1,S2,S3也有類似結(jié)論,則類似的結(jié)論是什么?這個(gè)結(jié)論正確嗎?說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案