(2013•湖南)如圖,在半徑為的⊙O中,弦AB,CD相交于點(diǎn)P,PA=PB=2,PD=1,則圓心O到弦CD的距離為 .

 

 

【解析】

試題分析:首先利用相交弦定理求出CD的長(zhǎng),再利用勾股定理求出圓心O到弦CD的距離,注意計(jì)算的正確率.

【解析】
由相交弦定理得,AP×PB=CP×PD,

∴2×2=CP•1,

解得:CP=4,又PD=1,

∴CD=5,

又⊙O的半徑為,

則圓心O到弦CD的距離為d===

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:[同步]2015人教B版選修4-5 3.2用數(shù)學(xué)歸納法證明不等式練習(xí)卷(解析版) 題型:選擇題

用數(shù)學(xué)歸納法證明,第二步證明從k到k+1,左端增加的項(xiàng)數(shù)為( )

A.2k﹣1 B.2k C.2k﹣1 D.2k+1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014新人教A版選修4-1 2.3圓的切線性質(zhì)及判定定理練習(xí)(解析版) 題型:填空題

(2014•潮州二模)AB是圓O的直徑,EF切圓O于C,AD⊥EF于D,AD=2,AB=6,則AC長(zhǎng)為 .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014新人教A版選修4-1 2.3圓的切線性質(zhì)及判定定理練習(xí)(解析版) 題型:選擇題

(2005•福建)△ABC中,內(nèi)切圓I和邊BC、CA、AB分別相切于點(diǎn)D、E、F,則∠FDE與 ∠A的關(guān)系是( )

A.∠FDE+∠A=90° B.∠FDE=∠A C.∠FDE+∠A=180° D.無法確定

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014新人教A版選修4-1 2.2圓內(nèi)接四邊形性質(zhì)與判定定理(解析版) 題型:填空題

(2010•北京)如圖,⊙O的弦ED,CB的延長(zhǎng)線交于點(diǎn)A.若BD⊥AE,AB=4,BC=2,AD=3,則DE= ;CE= .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014新人教A版選修4-1 2.2圓內(nèi)接四邊形性質(zhì)與判定定理(解析版) 題型:選擇題

下列四邊形中,四個(gè)頂點(diǎn)一定在同一個(gè)圓上的是( )

A.平行四邊行 B.菱形 C.矩形 D.直角梯形

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014新人教A版選修4-1 2.2圓內(nèi)接四邊形性質(zhì)與判定定理(解析版) 題型:選擇題

點(diǎn)P到平面四邊形ABCD四條邊的距離相等,則四邊形ABCD是( )

A.某圓的內(nèi)接四邊形 B.某圓的外切四邊形

C.正方形 D.任意四邊形兩個(gè)半圓

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年蘇教版選修1-2 3.2復(fù)數(shù)的四則運(yùn)算練習(xí)卷(解析版) 題型:選擇題

i是虛數(shù)單位,=( )

A.1+2i B.1﹣2i C.2+i D.2﹣i

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年蘇教版選修1-1 3.4導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用練習(xí)卷(解析版) 題型:填空題

橫梁的強(qiáng)度和它的矩形橫斷面的寬成正比,并和矩形橫斷面的高的平方成正比,要將直徑為d的圓木鋸成強(qiáng)度最大的橫梁,則橫斷面的寬是 .

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案